Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1985 Sep;49(3):844–847. doi: 10.1128/iai.49.3.844-847.1985

Effect of theophylline on differentiation of Trypanosoma brucei.

S L Reed, A S Fierer, D R Goddard, M E Colmerauer, C E Davis
PMCID: PMC261294  PMID: 2993168

Abstract

Differentiation of Trypanosoma brucei in the mammal limits the degree of parasitemia and prepares the trypanosome for passage back into the tsetse fly. In an attempt to define the signals that control differentiation, we found that theophylline, in contrast to indomethacin, blocked differentiation, prolonged parasitemia, elevated prostaglandin and cyclic AMP concentrations of rat plasma, and depressed intratrypanosomal cyclic AMP. Relatively nontoxic drugs that alter differentiation are powerful tools for elucidating the events that control this important process.

Full text

PDF
844

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHCROFT M. T. The polymorphism of Trypanosoma brucei and T. rhodesiense, its relation to relapses and remissions of infections in white rats, and the effect of cortisone. Ann Trop Med Parasitol. 1957 Sep;51(3):301–312. doi: 10.1080/00034983.1957.11685819. [DOI] [PubMed] [Google Scholar]
  2. BUTCHER R. W., SUTHERLAND E. W. Adenosine 3',5'-phosphate in biological materials. I. Purification and properties of cyclic 3',5'-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3',5'-phosphate in human urine. J Biol Chem. 1962 Apr;237:1244–1250. [PubMed] [Google Scholar]
  3. Baer P. G., Armstrong E. L., Cagen L. M. Dissociation of effects of xanthine analogs on renal prostaglandins and renal excretory function in the awake rat. J Pharmacol Exp Ther. 1983 Dec;227(3):600–604. [PubMed] [Google Scholar]
  4. Ballon-Landa G., Douglas H., Colmerauer M. E., Goddard D., Davis C. E. Growth and antigenic variation of Trypanosoma brucei, T. rhodesiense and T. gambiense in subcutaneous millipore chambers. Trans R Soc Trop Med Hyg. 1985;79(1):24–28. doi: 10.1016/0035-9203(85)90224-x. [DOI] [PubMed] [Google Scholar]
  5. Black S. J., Sendashonga C. N., Lalor P. A., Whitelaw D. D., Jack R. M., Morrison W. I., Murray M. Regulation of the growth and differentiation of Trypanosoma (Trypanozoon) brucei brucei in resistant (C57Bl/6) and susceptible (C3H/He) mice. Parasite Immunol. 1983 Sep;5(5):465–478. doi: 10.1111/j.1365-3024.1983.tb00761.x. [DOI] [PubMed] [Google Scholar]
  6. Brotherton A. F., Macfarlane D. E., Hoak J. C. Prostacyclin biosynthesis in vascular endothelium is not inhibited by cyclic AMP. Studies with 3-isobutyl-1-methylxanthine and forskolin. Thromb Res. 1982 Dec 1;28(5):637–647. doi: 10.1016/0049-3848(82)90155-4. [DOI] [PubMed] [Google Scholar]
  7. Coffino P., Gray J. W., Tomkins G. M. Cyclic AMP, a nonessential regulator of the cell cycle. Proc Natl Acad Sci U S A. 1975 Mar;72(3):878–882. doi: 10.1073/pnas.72.3.878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fredholm B. B., Sydbom A. Are the anti-allergic actions of theophylline due to antagonism at the adenosine receptor. Agents Actions. 1980 Apr;10(1 Pt 2):145–147. doi: 10.1007/BF02024198. [DOI] [PubMed] [Google Scholar]
  9. Gonçalves M. F., Zingales B., Colli W. cAMP phosphodiesterase and activator protein of mammalian cAMP phosphodiesterase from Trypanosoma cruzi. Mol Biochem Parasitol. 1980 Apr;1(2):107–118. doi: 10.1016/0166-6851(80)90005-5. [DOI] [PubMed] [Google Scholar]
  10. Hong S. L. Inhibition of prostacyclin synthesis in endothelial cells by methylisobutylxanthine is not mediated through elevated cAMP level. Biochim Biophys Acta. 1983 Dec 20;754(3):258–263. doi: 10.1016/0005-2760(83)90140-6. [DOI] [PubMed] [Google Scholar]
  11. Kram R., Mamont P., Tomkins G. M. Pleiotypic control by adenosine 3':5'-cyclic monophosphate: a model for growth control in animal cells. Proc Natl Acad Sci U S A. 1973 May;70(5):1432–1436. doi: 10.1073/pnas.70.5.1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lanham S. M., Godfrey D. G. Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol. 1970 Dec;28(3):521–534. doi: 10.1016/0014-4894(70)90120-7. [DOI] [PubMed] [Google Scholar]
  13. Mancini P. E., Patton C. L. Cyclic 3',5'-adenosine monophosphate levels during the developmental cycle of Trypanosoma brucei brucei in the rat. Mol Biochem Parasitol. 1981 May;3(1):19–31. doi: 10.1016/0166-6851(81)90074-8. [DOI] [PubMed] [Google Scholar]
  14. Otten J., Bader J., Johnson G. S., Pastan I. A mutation in a rous sarcoma virus gene that controls adenosine 3',5'-monophosphate levels and transformation. J Biol Chem. 1972 Mar 10;247(5):1632–1633. [PubMed] [Google Scholar]
  15. Sendashonga C. N., Black S. J. Humoral responses against Trypanosoma brucei variable surface antigen are induced by degenerating parasites. Parasite Immunol. 1982 Jul;4(4):245–257. doi: 10.1111/j.1365-3024.1982.tb00436.x. [DOI] [PubMed] [Google Scholar]
  16. Sheppard J. R. Difference in the cyclic adenosine 3',5'-monophosphate levels in normal and transformed cells. Nat New Biol. 1972 Mar 1;236(61):14–16. doi: 10.1038/newbio236014a0. [DOI] [PubMed] [Google Scholar]
  17. Vickerman K. Polymorphism and mitochondrial activity in sleeping sickness trypanosomes. Nature. 1965 Nov 20;208(5012):762–766. doi: 10.1038/208762a0. [DOI] [PubMed] [Google Scholar]
  18. Voorheis H. P., Martin B. R. Characteristics of the calcium-mediated mechanism activating adenylate cyclase in Trypanosoma brucei. Eur J Biochem. 1981 Jun 1;116(3):471–477. doi: 10.1111/j.1432-1033.1981.tb05360.x. [DOI] [PubMed] [Google Scholar]
  19. WIJERS D. J., WILLETT K. C. Factors that may influence the infection rate of Glossina palpalis with Trypanosoma gambiense. II. The number and morphology of the trypano-somes present in the blood of the host at the time of the infected feed. Ann Trop Med Parasitol. 1960 Oct;54:341–350. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES