Abstract
We compared the oxidative metabolism of alveolar macrophages (AM) from adult and neonatal (1- and 7-day-old) rabbits before and after their in vitro exposure to type Ia group B streptococci (GBS) opsonized with immune rabbit serum. Nonstimulated AM from 1-day-old, 7-day-old, or adult rabbits consumed O2 at a rate of 17 to 20 nmol/10(6) AM per 10 min under basal conditions and released minimal amounts of superoxide (O2-) into the medium. Approximately 80% of this basal respiration was of mitochondrial origin, based on its inhibition by NaCN. Exposure to GBS opsonized with immune rabbit serum stimulated O2 consumption approximately half as effectively in the neonatal AM as in the adult AM. Little O2- was released into the medium unless the cells were pretreated with dihydrocytochalasin B. Under such conditions, 1-day-old, 7-day-old, and adult AM released 3.6, 5.3, and 13.9 nmol of O2-/10(6) AM per 10 min, respectively. The uptake of opsonized GBS by 1-day-old AM was not affected by 1 mM NaCN, whereas phagocytosis by adult AM was substantially reduced under these conditions. Overall, our findings suggest that neonatal AM have less-well-developed postphagocytic oxidative metabolic responses and release less superoxide after exposure to opsonized GBS than do adult AM. They also demonstrate that the energy for phagocytosis is derived principally from mitochondrial metabolism in adult AM but not in neonatal AM. We conclude that metabolic differences between neonatal and adult AM may contribute to neonatal pulmonary susceptibility to GBS infections and account, in part, for the ability of GBS to succeed as neonatal pulmonary pathogens.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anthony B. F. Immunity to the group B streptococci: interaction of serum and macrophages with types Ia, Ib, and Ic. J Exp Med. 1976 May 1;143(5):1186–1198. doi: 10.1084/jem.143.5.1186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anthony B. F., Okada D. M. The emergence of group B streptococci in infections of the newborn infant. Annu Rev Med. 1977;28:355–369. doi: 10.1146/annurev.me.28.020177.002035. [DOI] [PubMed] [Google Scholar]
- Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
- Badwey J. A., Karnovsky M. L. Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem. 1980;49:695–726. doi: 10.1146/annurev.bi.49.070180.003403. [DOI] [PubMed] [Google Scholar]
- Baker C. J. Group B streptococcal infections. Adv Intern Med. 1980;25:475–501. [PubMed] [Google Scholar]
- Bernard J., Gee J. B., Khandwala A. S. Oxygen metabolism in the alveolar macrophage: friend and foe? J Reticuloendothel Soc. 1976 Apr;19(4):229–236. [PubMed] [Google Scholar]
- Biggar W. D., Sturgess J. M. Role of lysozyme in the microbicidal activity of rat alveolar macrophages. Infect Immun. 1977 Jun;16(3):974–982. doi: 10.1128/iai.16.3.974-982.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cech P., Lehrer R. I. Phagolysosomal pH of human neutrophils. Blood. 1984 Jan;63(1):88–95. [PubMed] [Google Scholar]
- DeChatelet L. R., Mulikin D., McCall C. E. The generation of superoxide anion by various types of phagocyte. J Infect Dis. 1975 Apr;131(4):443–446. doi: 10.1093/infdis/131.4.443. [DOI] [PubMed] [Google Scholar]
- Franciosi R. A., Knostman J. D., Zimmerman R. A. Group B streptococcal neonatal and infant infections. J Pediatr. 1973 Apr;82(4):707–718. doi: 10.1016/s0022-3476(73)80604-3. [DOI] [PubMed] [Google Scholar]
- GREEN G. M., KASS E. H. THE ROLE OF THE ALVEOLAR MACROPHAGE IN THE CLEARANCE OF BACTERIA FROM THE LUNG. J Exp Med. 1964 Jan 1;119:167–176. doi: 10.1084/jem.119.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein E., Lippert W., Warshauer D. Pulmonary alveolar macrophage. Defender against bacterial infection of the lung. J Clin Invest. 1974 Sep;54(3):519–528. doi: 10.1172/JCI107788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hed J., Stendahl O. Differences in the ingestion mechanisms of IgG and C3b particles in phagocytosis by neutrophils. Immunology. 1982 Apr;45(4):727–736. [PMC free article] [PubMed] [Google Scholar]
- Hocking W. G., Golde D. W. The pulmonary-alveolar macrophage (first of two parts). N Engl J Med. 1979 Sep 13;301(11):580–587. doi: 10.1056/NEJM197909133011104. [DOI] [PubMed] [Google Scholar]
- Johnston R. B., Jr Oxygen metabolism and the microbicidal activity of macrophages. Fed Proc. 1978 Nov;37(13):2759–2764. [PubMed] [Google Scholar]
- Lehrer R. I., Selsted M. E., Szklarek D., Fleischmann J. Antibacterial activity of microbicidal cationic proteins 1 and 2, natural peptide antibiotics of rabbit lung macrophages. Infect Immun. 1983 Oct;42(1):10–14. doi: 10.1128/iai.42.1.10-14.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patterson-Delafield J., Martinez R. J., Lehrer R. I. Microbicidal cationic proteins in rabbit alveolar macrophages: a potential host defense mechanism. Infect Immun. 1980 Oct;30(1):180–192. doi: 10.1128/iai.30.1.180-192.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romeo D., Zabucchi G., Marzi T., Rossi F. Kinetic and enzymatic features of metabolic stimulation of alveolar and peritoneal macrophages challenged with bacteria. Exp Cell Res. 1973 Apr;78(2):423–432. doi: 10.1016/0014-4827(73)90087-6. [DOI] [PubMed] [Google Scholar]
- Selsted M. E., Brown D. M., DeLange R. J., Lehrer R. I. Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem. 1983 Dec 10;258(23):14485–14489. [PubMed] [Google Scholar]
- Sherman M. P., Lehrer R. I. Superoxide generation by neonatal and adult rabbit alveolar macrophages. J Leukoc Biol. 1984 Jul;36(1):39–50. doi: 10.1002/jlb.36.1.39. [DOI] [PubMed] [Google Scholar]
- Sherman M., Goldstein E., Lippert W., Wennberg R. Group B streptococcal lung infection in neonatal rabbits. Pediatr Res. 1982 Mar;16(3):209–212. doi: 10.1203/00006450-198203000-00009. [DOI] [PubMed] [Google Scholar]
- Simon L. M., Robin E. D., Phillips J. R., Acevedo J., Axline S. G., Theodore J. Enzymatic basis for bioenergetic differences of alveolar versus peritoneal macrophages and enzyme regulation by molecular O2. J Clin Invest. 1977 Mar;59(3):443–448. doi: 10.1172/JCI108658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki Y., Lehrer R. I. NAD(P)H oxidase activity in human neutrophils stimulated by phorbol myristate acetate. J Clin Invest. 1980 Dec;66(6):1409–1418. doi: 10.1172/JCI109994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkinson H. W., Facklam R. R., Wortham E. C. Distribution by serological type of group B streptococci isolated from a variety of clinical material over a five-year period (with special reference to neonatal sepsis and meningitis). Infect Immun. 1973 Aug;8(2):228–235. doi: 10.1128/iai.8.2.228-235.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeligs B. J., Nerurkar L. S., Bellanti J. A., Zeligs J. D. Maturation of the rabbit alveolar macrophage during animal development. I. Perinatal influx into alveoli and ultrastructural differentiation. Pediatr Res. 1977 Mar;11(3 Pt 1):197–208. doi: 10.1203/00006450-197703000-00011. [DOI] [PubMed] [Google Scholar]