Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1985 Jan;47(1):37–40. doi: 10.1128/iai.47.1.37-40.1985

Effect of calcium ions on staphylococcal alpha-toxin-induced hemolysis of rabbit erythrocytes.

S Harshman, N Sugg
PMCID: PMC261457  PMID: 3965408

Abstract

Calcium in millimolar concentrations protected rabbit erythrocytes from hemolysis caused by staphylococcal alpha-toxin. This effect was maximal at 30 mM CaCl2 and required the continued presence of calcium. The protection was not absolute and could be overcome by increased concentrations of alpha-toxin. Calcium did not block the binding of alpha-toxin to erythrocytes but inhibited the alpha-toxin-induced release of small ions from the cell as measured by 86Rb release. The transient removal of calcium was sufficient to abrogate its protective effect, suggesting that its action involves a reversible alteration in the state of the membrane. The three steps of the alpha-toxin-induced hemolytic sequence are: (i) binding to specific receptors, (ii) formation of transmembrane pores, and (iii) cell lysis. We concluded that calcium acted at step ii by impeding the lateral movement of alpha-toxin necessary to form the transmembrane hexamer pores.

Full text

PDF
37

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D., Michell R. H. The relationship between Ca2+-mediated polyphosphoinositide phosphodiesterase activity, 1, 2-diacylglycerol accumulation, and microvesiculation in erythrocytes. Prog Clin Biol Res. 1979;30:523–529. [PubMed] [Google Scholar]
  2. Avigad L. S., Bernheimer A. W. Inhibition by zinc of hemolysis induced by bacterial and other cytolytic agents. Infect Immun. 1976 May;13(5):1378–1381. doi: 10.1128/iai.13.5.1378-1381.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Avigad L. S., Bernheimer A. W. Inhibition of hemolysis by zinc and its reversal by L-histidine. Infect Immun. 1978 Mar;19(3):1101–1103. doi: 10.1128/iai.19.3.1101-1103.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BERNHEIMER A. W., SCHWARTZ L. L. Isolation and composition of staphylococcal alpha toxin. J Gen Microbiol. 1963 Mar;30:455–468. doi: 10.1099/00221287-30-3-455. [DOI] [PubMed] [Google Scholar]
  5. Barei G. M., Fackrell H. B. The binding of fluorescein-labelled stapbylococcal alpha toxoid to erythrocytes. Can J Microbiol. 1979 Nov;25(11):1219–1226. doi: 10.1139/m79-192. [DOI] [PubMed] [Google Scholar]
  6. Cassidy P., Harshman S. Characterization of detergent-solubilized iodine-125-labeled alpha-toxin bound to rabbit erythrocytes and mouse diaphragm muscle. Biochemistry. 1979 Jan 9;18(1):232–236. doi: 10.1021/bi00568a036. [DOI] [PubMed] [Google Scholar]
  7. Cassidy P., Harshman S. Purification of staphylococcal alpha-toxin by adsorption chromatography on glass. Infect Immun. 1976 Mar;13(3):982–986. doi: 10.1128/iai.13.3.982-986.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cassidy P., Harshman S. Studies on the binding of staphylococcal 125I-labeled alpha-toxin to rabbit erythrocytes. Biochemistry. 1976 Jun 1;15(11):2348–2355. doi: 10.1021/bi00656a016. [DOI] [PubMed] [Google Scholar]
  9. Faulstich H., Bühring H. J., Seitz J. Physical properties and function of phallolysin. Biochemistry. 1983 Sep 13;22(19):4574–4580. doi: 10.1021/bi00288a035. [DOI] [PubMed] [Google Scholar]
  10. Freer J. H., Arbuthnott J. P. Toxins of Staphylococcus aureus. Pharmacol Ther. 1982;19(1):55–106. doi: 10.1016/0163-7258(82)90042-0. [DOI] [PubMed] [Google Scholar]
  11. Füssle R., Bhakdi S., Sziegoleit A., Tranum-Jensen J., Kranz T., Wellensiek H. J. On the mechanism of membrane damage by Staphylococcus aureus alpha-toxin. J Cell Biol. 1981 Oct;91(1):83–94. doi: 10.1083/jcb.91.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harshman S. Action of staphylococcal alpha-toxin on membranes: some recent advances. Mol Cell Biochem. 1979 Feb 9;23(3):143–152. doi: 10.1007/BF00219453. [DOI] [PubMed] [Google Scholar]
  13. Howard S. P., Buckley J. T. Membrane glycoprotein receptor and hole-forming properties of a cytolytic protein toxin. Biochemistry. 1982 Mar 30;21(7):1662–1667. doi: 10.1021/bi00536a029. [DOI] [PubMed] [Google Scholar]
  14. Lorand L., Siefring G. E., Jr, Lowe-Krentz L. Enzymatic basis of membrane stiffening in human erythroyctes. Semin Hematol. 1979 Jan;16(1):65–74. [PubMed] [Google Scholar]
  15. Lucy J. A. Fusogenic mechanisms. Ciba Found Symp. 1984;103:28–44. doi: 10.1002/9780470720844.ch3. [DOI] [PubMed] [Google Scholar]
  16. MADOFF M. A., COOPER L. Z., WEINSTEIN L. HEMOLYSIS OF RABBIT ERYTHROCYTES BY PURIFIED STAPHYLOCOCCAL ALPHA-TOXIN. III. POTASSIUM RELEASE. J Bacteriol. 1964 Jan;87:145–149. doi: 10.1128/jb.87.1.145-149.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Murakami T., Hatanaka M., Murachi T. The cytosol of human erythrocytes contains a highly Ca2+-sensitive thiol protease (calpain I) and its specific inhibitor protein (calpastatin). J Biochem. 1981 Dec;90(6):1809–1816. doi: 10.1093/oxfordjournals.jbchem.a133659. [DOI] [PubMed] [Google Scholar]
  18. Parker J. C. Effects of drugs on calcium-related phenomena in red blood cells. Fed Proc. 1981 Dec;40(14):2872–2876. [PubMed] [Google Scholar]
  19. Reed P. W. Effects of divalent cation ionophore A23187 on potassium permeability of rat erythrocytes. J Biol Chem. 1976 Jun 10;251(11):3489–3494. [PubMed] [Google Scholar]
  20. Takeda Y., Ogiso Y., Miwatani T. Effect of zinc ion on the hemolytic activity of thermostable direct hemolysin from Vibrio parahaemolyticus, streptolysin O, and Triton X-100. Infect Immun. 1977 Aug;17(2):239–243. doi: 10.1128/iai.17.2.239-243.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES