Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1985 Jan;47(1):112–117. doi: 10.1128/iai.47.1.112-117.1985

Effect of phenethyl alcohol on Staphylococcus aureus alpha-lysin production.

K Y Lee, T H Birkbeck
PMCID: PMC261484  PMID: 2578120

Abstract

Phenethyl alcohol, at the maximum concentration which did not inhibit growth (0.3% [vol/vol]), inhibited the production of alpha-lysin and exoproteases but not that of delta-lysin in Staphylococcus aureus Wood 46. The inhibition of alpha-lysin was reversible, and transient accumulation of cell-associated alpha-lysin occurred in the presence of PEA. A precursor of alpha-lysin ca. 3,000 daltons larger than extracellular alpha-lysin was immunologically detected in the sodium dodecyl sulfate extracts of membranes and whole cells of phenethyl alcohol-treated S. aureus cultures. Also, a degraded form of alpha-lysin was detected in membranes prepared from cells lysed by lysostaphin but not in membranes from cells lysed with an X-press.

Full text

PDF
112

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenbern R. A. Extreme sensitivity of staphylococcal enterotoxin B and C production to inhibition by cerulenin. Antimicrob Agents Chemother. 1977 May;11(5):906–908. doi: 10.1128/aac.11.5.906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BERNHEIMER A. W., SCHWARTZ L. L. Isolation and composition of staphylococcal alpha toxin. J Gen Microbiol. 1963 Mar;30:455–468. doi: 10.1099/00221287-30-3-455. [DOI] [PubMed] [Google Scholar]
  3. Birkbeck T. H., Stephen J. Immunochemical isolation of vaccinia-virus antigens. Immunochemistry. 1971 Nov;8(11):1029–1039. doi: 10.1016/0019-2791(71)90491-5. [DOI] [PubMed] [Google Scholar]
  4. Blobel G., Dobberstein B. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol. 1975 Dec;67(3):852–862. doi: 10.1083/jcb.67.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chao L. P., Birkbeck T. H. Assay of staphylococcal delta-haemolysin with fish erythrocytes. J Med Microbiol. 1978 Aug;11(3):303–313. doi: 10.1099/00222615-11-3-303. [DOI] [PubMed] [Google Scholar]
  6. Colacicco G., Buckelew A. R., Jr Lipid monolayers: influence of lipid film and urea on the surface activity of staphylococcal alpha-toxin. Lipids. 1971 Aug;6(8):546–553. doi: 10.1007/BF02531134. [DOI] [PubMed] [Google Scholar]
  7. Coulter J. R., Mukherjee T. M. Electron microscopic localization of alpha toxin within the staphylococcal cell by ferritin-labeled antibody. Infect Immun. 1971 Nov;4(5):650–655. doi: 10.1128/iai.4.5.650-655.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dalen A. B. Proteolytic degradation of staphylococcal alpha-toxin. Acta Pathol Microbiol Scand B. 1976 Oct;84B(5):309–314. doi: 10.1111/j.1699-0463.1976.tb01943.x. [DOI] [PubMed] [Google Scholar]
  9. Davis B. D., Tai P. C. The mechanism of protein secretion across membranes. Nature. 1980 Jan 31;283(5746):433–438. doi: 10.1038/283433a0. [DOI] [PubMed] [Google Scholar]
  10. DiRienzo J. M., Inouye M. Lipid fluidity-dependent biosynthesis and assembly of the outer membrane proteins of E. coli. Cell. 1979 May;17(1):155–161. doi: 10.1016/0092-8674(79)90303-9. [DOI] [PubMed] [Google Scholar]
  11. Duncan J. L., Cho G. J. Production of staphylococcal alpha toxin. I. Relationship between cell growth and toxin formation. Infect Immun. 1971 Oct;4(4):456–461. doi: 10.1128/iai.4.4.456-461.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fishman Y., Rottem S., Citri N. Preferential suppression of normal exoenzyme formation by membrane-modifying agents. J Bacteriol. 1980 Mar;141(3):1435–1438. doi: 10.1128/jb.141.3.1435-1438.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Freer J. H., Arbuthnott J. P., Bernheimer A. W. Interaction of staphylococcal alpha-toxin with artificial and natural membranes. J Bacteriol. 1968 Mar;95(3):1153–1168. doi: 10.1128/jb.95.3.1153-1168.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Freer J. H., Arbuthnott J. P. Toxins of Staphylococcus aureus. Pharmacol Ther. 1982;19(1):55–106. doi: 10.1016/0163-7258(82)90042-0. [DOI] [PubMed] [Google Scholar]
  15. Halegoua S., Inouye M. Translocation and assembly of outer membrance proteins of Escherichia coli. Selective accumulation of precursors and novel assembly intermediates caused by phenethyl alcohol. J Mol Biol. 1979 May 5;130(1):39–61. doi: 10.1016/0022-2836(79)90551-5. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lazdunski C., Baty D., Pagès J. M. Procaine, a local anesthetic interacting with the cell membrane, inhibits the processing of precursor forms of periplasmic proteins in Escherichia coli. Eur J Biochem. 1979 May 2;96(1):49–57. doi: 10.1111/j.1432-1033.1979.tb13012.x. [DOI] [PubMed] [Google Scholar]
  18. Lee K. Y., Birkbeck T. H. In vitro synthesis of the delta-lysin of Staphylococcus aureus. Infect Immun. 1984 May;44(2):434–438. doi: 10.1128/iai.44.2.434-438.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Müller G. H. Protein labelling with 3H-NSP (N-succinimidyl-[2,3-3H]propionate). J Cell Sci. 1980 Jun;43:319–328. doi: 10.1242/jcs.43.1.319. [DOI] [PubMed] [Google Scholar]
  20. Nunn W. D., Tropp B. E. Effects of phenethyl alcohol on phospholipid metabolism in Escherichia coli. J Bacteriol. 1972 Jan;109(1):162–168. doi: 10.1128/jb.109.1.162-168.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pagès J. M., Piovant M., Varenne S., Lazdunski C. Mechanistic aspects of the transfer of nascent periplasmic proteins across the cytoplasmic membrane in Escherichia coli. Eur J Biochem. 1978 May 16;86(2):589–602. doi: 10.1111/j.1432-1033.1978.tb12343.x. [DOI] [PubMed] [Google Scholar]
  22. Rogolsky M. Nonenteric toxins of Staphylococcus aureus. Microbiol Rev. 1979 Sep;43(3):320–360. doi: 10.1128/mr.43.3.320-360.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Silver S., Wendt L. Mechanism of action of phenethyl alcohol: breakdown of the cellular permeability barrier. J Bacteriol. 1967 Feb;93(2):560–566. doi: 10.1128/jb.93.2.560-566.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Theodore T. S., Popkin T. J., Cole R. M. The separation and isolation of plasma membranes and mesosomal vesicles from Staphylococcus aureus. Prep Biochem. 1971;1(3):233–248. doi: 10.1080/00327487108081942. [DOI] [PubMed] [Google Scholar]
  25. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tweten R. K., Christianson K. K., Iandolo J. J. Transport and processing of staphylococcal alpha-toxin. J Bacteriol. 1983 Nov;156(2):524–528. doi: 10.1128/jb.156.2.524-528.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tweten R. K., Iandolo J. J. Purification and partial characterization of a putative precursor to staphylococcal enterotoxin B. Infect Immun. 1981 Dec;34(3):900–907. doi: 10.1128/iai.34.3.900-907.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  29. Yoshikawa M., Matsuda F., Naka M., Murofushi E., Tsunematsu Y. Pleiotropic alteration of activities of several toxins and enzymes in mutants of Staphylococcus aureus. J Bacteriol. 1974 Jul;119(1):117–122. doi: 10.1128/jb.119.1.117-122.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES