Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1985 Jan;47(1):277–281. doi: 10.1128/iai.47.1.277-281.1985

Anaerobic phagocytosis, killing, and degradation of Streptococcus pneumoniae by human peripheral blood leukocytes.

M Thore, S Löfgren, A Tärnvik, T Monsen, E Selstam, L G Burman
PMCID: PMC261508  PMID: 3965400

Abstract

Encapsulated Streptococcus pneumoniae of serotypes 2, 9N, 14, 21, and 23F and an unencapsulated variant of type 2 pneumococci were efficiently phagocytosed by both aerobically and anaerobically incubated human leukocytes. In the presence of O2, the pneumococci rapidly lost their viability, whereas during anaerobiosis, killing was considerably delayed. Type 14 pneumococci radiolabeled with [14C]choline or [14C]ethanolamine for cell wall teichoic acid, [14C]uracil for nucleic acids, or [14C]arachidonic acid for unsaturated cytoplasmic membrane lipids were used in studies of the fate of bacterial macromolecules after phagocytosis. The degradation of teichoic acid, RNA, and DNA during anaerobiosis approached that recorded in air at 60 min of incubation (45 to 70% and 55 to 75%, respectively). In contrast, the marked loss of [14C]arachidonic acid from pneumococcal membrane lipids observed in aerobic leukocytes did not occur during anaerobic incubation. Hence, lipid peroxidation could be involved in the rapid aerobic leukocyte killing of pneumococci, whereas a different leukocyte function of as yet unknown nature appears to be responsible for the killing seen in anaerobiosis. Autolysis-resistant type 14 pneumococci were obtained by substituting ethanolamine for choline in a defined culture medium. Differences between such bacteria and normal (autolytic) pneumococci in their killing and degradation by leukocytes were not detected in either the presence or the absence of O2. The aerobic and anaerobic handling of phagocytosed pneumococci by human blood leukocytes thus proceeded independently of the bacterial autolytic system.

Full text

PDF
277

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold R. R., Brewer M., Gauthier J. J. Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms. Infect Immun. 1980 Jun;28(3):893–898. doi: 10.1128/iai.28.3.893-898.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braconier J. H., Odeberg H. Granulocyte phagocytosis and killing virulent and avirulent serotypes of Streptococcus pneumoniae. J Lab Clin Med. 1982 Aug;100(2):279–287. [PubMed] [Google Scholar]
  3. COHN Z. A., MORSE S. I. Interactions between rabbit polymorphonuclear leucocytes and staphylococci. J Exp Med. 1959 Sep 1;110:419–443. doi: 10.1084/jem.110.3.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carenfelt C., Lundberg C. Purulent and non-purulent maxillary sinus secretions with respect to pO2, pCO2 and pH. Acta Otolaryngol. 1977 Jul-Aug;84(1-2):138–144. doi: 10.3109/00016487709123952. [DOI] [PubMed] [Google Scholar]
  5. Elsbach P. Degradation of microorganisms by phagocytic cells. Rev Infect Dis. 1980 Jan-Feb;2(1):106–128. doi: 10.1093/clinids/2.1.106. [DOI] [PubMed] [Google Scholar]
  6. Elsbach P., Weiss J. A reevaluation of the roles of the O2-dependent and O2-independent microbicidal systems of phagocytes. Rev Infect Dis. 1983 Sep-Oct;5(5):843–853. doi: 10.1093/clinids/5.5.843. [DOI] [PubMed] [Google Scholar]
  7. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  8. Ferrante A., Thong Y. H. A rapid one-step procedure for purification of mononuclear and polymorphonuclear leukocytes from human blood using a modification of the Hypaque-Ficoll technique. J Immunol Methods. 1978;24(3-4):389–393. doi: 10.1016/0022-1759(78)90143-6. [DOI] [PubMed] [Google Scholar]
  9. Frederick J., Braude A. I. Anaerobic infection of the paranasal sinuses. N Engl J Med. 1974 Jan 17;290(3):135–137. doi: 10.1056/NEJM197401172900304. [DOI] [PubMed] [Google Scholar]
  10. Jacques Y. V., Bainton D. F. Changes in pH within the phagocytic vacuoles of human neutrophils and monocytes. Lab Invest. 1978 Sep;39(3):179–185. [PubMed] [Google Scholar]
  11. Johnston R. B., Jr, Klemperer M. R., Alper C. A., Rosen F. S. The enhancement of bacterial phagocytosis by serum. The role of complement components and two cofactors. J Exp Med. 1969 Jun 1;129(6):1275–1290. doi: 10.1084/jem.129.6.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kallings L. O. Bacteriological aspects of infections of the upper respiratory tract. Scand J Infect Dis Suppl. 1983;39:9–13. [PubMed] [Google Scholar]
  13. Klebanoff S. J. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol. 1968 Jun;95(6):2131–2138. doi: 10.1128/jb.95.6.2131-2138.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koskela M., Leinonen M., Luotonen J. Serum antibody response to pneumococcal otitis media. Pediatr Infect Dis. 1982 Jul-Aug;1(4):245–252. doi: 10.1097/00006454-198207000-00013. [DOI] [PubMed] [Google Scholar]
  15. Löfgren S., Tärnvik A., Carlsson J. Demonstration of opsonizing antibodies to Francisella tularensis by leukocyte chemiluminescence. Infect Immun. 1980 Aug;29(2):329–334. doi: 10.1128/iai.29.2.329-334.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Löfgren S., Tärnvik A., Thore M., Carlsson J. A wild and an attenuated strain of Francisella tularensis differ in susceptibility to hypochlorous acid: a possible explanation of their different handling by polymorphonuclear leukocytes. Infect Immun. 1984 Feb;43(2):730–734. doi: 10.1128/iai.43.2.730-734.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MORRISON W. R., SMITH L. M. PREPARATION OF FATTY ACID METHYL ESTERS AND DIMETHYLACETALS FROM LIPIDS WITH BORON FLUORIDE--METHANOL. J Lipid Res. 1964 Oct;5:600–608. [PubMed] [Google Scholar]
  18. Mandell G. L. Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils. Infect Immun. 1974 Feb;9(2):337–341. doi: 10.1128/iai.9.2.337-341.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mosser J. L., Tomasz A. Choline-containing teichoic acid as a structural component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic enzyme. J Biol Chem. 1970 Jan 25;245(2):287–298. [PubMed] [Google Scholar]
  20. Nichols B. W., Harris R. V., James A. T. The lipid metabolism of blue-green algae. Biochem Biophys Res Commun. 1965 Jul 26;20(3):256–262. doi: 10.1016/0006-291x(65)90356-6. [DOI] [PubMed] [Google Scholar]
  21. Pitt J., Bernheimer H. P. Role of peroxide in phagocytic killing of pneumococci. Infect Immun. 1974 Jan;9(1):48–52. doi: 10.1128/iai.9.1.48-52.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SBARRA A. J., KARNOVSKY M. L. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem. 1959 Jun;234(6):1355–1362. [PubMed] [Google Scholar]
  23. Shohet S. B., Nathan D. G., Karnovsky M. L. Stages in the incorporation of fatty acids into red blood cells. J Clin Invest. 1968 May;47(5):1096–1108. doi: 10.1172/JCI105799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shohet S. B., Pitt J., Baehner R. L., Poplack D. G. Lipid peroxidation in the killing of phagocytized pneumococci. Infect Immun. 1974 Dec;10(6):1321–1328. doi: 10.1128/iai.10.6.1321-1328.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Thore M., Löfgren S., Tärnvik A. Oxygen and serum complement in phagocytosis and killing of Propionibacterium acnes. Acta Pathol Microbiol Immunol Scand C. 1983 Apr;91(2):95–100. [PubMed] [Google Scholar]
  26. Tomasz A., Beckerdite S., McDonnell M., Elsbach P. The activity of the pneumococcal autolytic system and the fate of the bacterium during ingestion by rabbit polymorphonuclear leukocytes. J Cell Physiol. 1977 Aug;92(2):155–160. doi: 10.1002/jcp.1040920203. [DOI] [PubMed] [Google Scholar]
  27. Tomasz A. Biological consequences of the replacement of choline by ethanolamine in the cell wall of Pneumococcus: chanin formation, loss of transformability, and loss of autolysis. Proc Natl Acad Sci U S A. 1968 Jan;59(1):86–93. doi: 10.1073/pnas.59.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES