Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2008 Oct 6;14(1):57–69. doi: 10.2478/s11658-008-0035-4

The interaction between L1-type proteins and ankyrins - a master switch for L1-type CAM function

Michael Hortsch 1,, Kakanahalli Nagaraj 1, Tanja A Godenschwege 3
PMCID: PMC2615246  NIHMSID: NIHMS82296  PMID: 18839070

Abstract

L1-type cell adhesion molecules (CAMs) are important mediators of neural differentiation, including axonal outgrowth and pathfinding and also of synapse formation and maintenance. In addition, their interactions with cytoskeletal components are highly conserved and regulated. How these different aspects of CAM functionality relate to each other is not well understood. Based on results from our and other laboratories we propose that ankyrin-binding to L1-type CAMs provides a master switch. The interaction with ankyrins directs L1-type adhesive proteins into different functional contexts, either ankyrin-independent functions, such as neurite outgrowth and axonal pathfinding or into ankyrin-dependent functions, such as L1’s role at axon initial segments (AIS), paranodal regions, synapses and in dendrites.

Key words: Cell adhesion, Ankyrins, Membrane skeleton, Tyrosine phosphorylation, Neurite outgrowth, Neuromuscular junction, Synapse, Synaptogenesis, Drosophila

Full Text

The Full Text of this article is available as a PDF (571.6 KB).

Abbreviations used

AIS

axon initial segments

CAM

cell adhesion molecule

EGFR

epidermal growth factor receptor

FGFR

fibroblast growth factor receptor

GF

giant fiber

GPI

glycosyl phosphoinositol

NMJ

neuromuscular junction

RTK

receptor tyrosine kinase

SAP

synapse-associated proteins

TTMn

tergotrochanteral motorneuron

VUM

ventral unpaired median

Footnotes

The content of this Mini review was first presented in a shortened form at the 12th Mejbaum-Katzenellenbogen Seminar “Membrane Skeleton. Recent Advances and Future Research Directions”, June 15–18, 2008, Zakopane, Poland

References

  • 1.Hortsch M. Structural and functional evolution of the L1-family: Are four adhesion molecules better than one? Mol. Cell. Neurosci. 2000;15:1–10. doi: 10.1006/mcne.1999.0809. [DOI] [PubMed] [Google Scholar]
  • 2.Hortsch M., Margolis B. Septate and paranodal junctions: Kissing cousins. Trends Cell. Biol. 2003;13:557–561. doi: 10.1016/j.tcb.2003.09.004. [DOI] [PubMed] [Google Scholar]
  • 3.Panicker A.K., Buhusi M., Thelen K., Maness P.F. Cellular signalling mechanisms of neural cell adhesion molecules. Front. Biosci. 2003;8:D900–911. doi: 10.2741/1014. [DOI] [PubMed] [Google Scholar]
  • 4.Godenschwege T.A., Kristiansen L.V., Uthaman S.B., Hortsch M., Murphey R.K. A conserved role for Drosophila Neuroglian and human L1-CAM in central-synapse formation. Curr. Biol. 2006;16:12–23. doi: 10.1016/j.cub.2005.11.062. [DOI] [PubMed] [Google Scholar]
  • 5.Ango F., di Cristo G., Higashiyama H., Bennett V., Wu P., Huang Z.J. Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell. 2004;119:257–272. doi: 10.1016/j.cell.2004.10.004. [DOI] [PubMed] [Google Scholar]
  • 6.Triana-Baltzer G.B., Liu Z., Berg D.K. Pre- and postsynaptic actions of L1-CAM in nicotinic pathways. Mol. Cell. Neurosci. 2006;33:214–226. doi: 10.1016/j.mcn.2006.07.008. [DOI] [PubMed] [Google Scholar]
  • 7.Hortsch M. The L1 family of neural cell adhesion molecules: Old proteins performing new tricks. Neuron. 1996;17:587–593. doi: 10.1016/S0896-6273(00)80192-0. [DOI] [PubMed] [Google Scholar]
  • 8.Davis J.Q., McLaughlin T., Bennett V. Ankyrin-binding proteins related to nervous system cell adhesion molecules: candidates to provide transmembrane and intercellular connections in adult brain. J. Cell. Biol. 1993;121:121–133. doi: 10.1083/jcb.121.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Davis J.Q., Bennett V. Ankyrin binding activity shared by the neurofascin/L1/NrCAM family of nervous system cell adhesion molecules. J. Biol. Chem. 1994;269:27163–27166. [PubMed] [Google Scholar]
  • 10.Dubreuil R.R., MacVicar G., Dissanayake S., Liu C., Homer D., Hortsch M. Neuroglian-mediated cell adhesion induces assembly of the membrane skeleton at cell contact sites. J. Cell. Biol. 1996;133:647–655. doi: 10.1083/jcb.133.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Malhotra J.D., Tsiotra P., Karagogeos D., Hortsch M. Cis-activation of L1-mediated ankyrin recruitment by TAG-1 homophilic cell adhesion. J. Biol. Chem. 1998;273:33354–33359. doi: 10.1074/jbc.273.50.33354. [DOI] [PubMed] [Google Scholar]
  • 12.Hortsch M., Homer D., Malhotra J.D., Chang S., Frankel J., Jefford G., Dubreuil R.R. Structural requirements for “outside-in” and “inside-out” signaling by Drosophila neuroglian, a member of the L1 family of cell adhesion molecules. J. Cell. Biol. 1998;142:251–261. doi: 10.1083/jcb.142.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Garver T.D., Ren Q., Tuvia S., Bennett V. Tyrosine phosphorylation at a site highly conserved in the L1 family of cell adhesion molecules abolishes ankyrin binding and increases lateral mobility of neurofascin. J. Cell. Biol. 1997;137:703–714. doi: 10.1083/jcb.137.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Bouley M., Tian M.-Z., Paisley K., Shen Y.-C., Malhotra J.D., Hortsch M. The L1-type cell adhesion molecule neuroglian influences the stability of neural ankyrin in the Drosophila embryo but not its axonal localization. J. Neurosci. 2000;20:4515–4523. doi: 10.1523/JNEUROSCI.20-12-04515.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Tuvia S., Garver T.D., Bennett V. The phosphorylation state of the FIGQY tyrosine of neurofascin determines ankyrin-binding activity and patterns of cell segregation. Proc. Natl. Acad. Sci. USA. 1997;94:12957–12962. doi: 10.1073/pnas.94.24.12957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kizhatil K., Wu Y.X., Sen A., Bennett V. A new activity of doublecortin in recognition of the phospho-FIGQY tyrosine in the cytoplasmic domain of neurofascin. J. Neurosci. 2002;22:7948–7958. doi: 10.1523/JNEUROSCI.22-18-07948.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Jenkins S.M., Kizhatil K., Kramarcy N.R., Sen A., Sealock R., Bennett V. FIGQY phosphorylation defines discrete populations of L1 cell adhesion molecules at sites of cell-cell contact and in migrating neurons. J. Cell Sci. 2001;114:3823–3835. doi: 10.1242/jcs.114.21.3823. [DOI] [PubMed] [Google Scholar]
  • 18.Whittard, J.D., Sakurai, T., Cassella, M.R., Gazdoiu, M. and Felsenfeld, D.P. MAP kinase pathway-dependent phosphorylation of the L1-CAM ankyrin-binding site regulates neuronal growth. Mol. Biol. Cell (2006). [DOI] [PMC free article] [PubMed]
  • 19.Gil O.D., Sakurai T., Bradley A.E., Fink M.Y., Cassella M.R., Kuo J.A., Felsenfeld D.P. Ankyrin binding mediates L1CAM interactions with static components of the cytoskeleton and inhibits retrograde movement of L1CAM on the cell surface. J. Cell. Biol. 2003;162:719–730. doi: 10.1083/jcb.200211011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Chen L., Ong B., Bennett V. LAD-1, the Caenorhabditis elegans L1CAM homologue, participates in embryonic and gonadal morphogenesis and is a substrate for fibroblast growth factor receptor pathway-dependent phosphotyrosine-based signaling. J. Cell. Biol. 2001;154:841–856. doi: 10.1083/jcb.200009004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Bennett V., Baines A.J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev. 2001;81:1353–1392. doi: 10.1152/physrev.2001.81.3.1353. [DOI] [PubMed] [Google Scholar]
  • 22.Mohler P.J., Gramolini A.O., Bennett V. Ankyrins. J. Cell Sci. 2002;115:1565–1566. doi: 10.1242/jcs.115.8.1565. [DOI] [PubMed] [Google Scholar]
  • 23.Otsuka A.J., Franco R., Yang B., Shim K.H., Tang L.Z., Zhang Y.Y., Boontrakulpoontawee P., Jeyaprakash A., Hedgecock E., Wheaton V.I., Sobery A. An ankyrin-related gene (unc-44) is necessary for proper axonal guidance in Caenorhabditis elegans. J. Cell. Biol. 1995;129:1081–1092. doi: 10.1083/jcb.129.4.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Dubreuil R.R., Yu J.-Q. Ankyrin and beta-spectrin accumulate independently of alpha-spectrin in Drosophila. Proc. Natl. Acad. Sci. USA. 1994;91:10285–10289. doi: 10.1073/pnas.91.22.10285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Koch I., Schwarz H., Beuchle D., Goellner B., Langegger M., Aberle H. Drosophila ankyrin 2 is required for synaptic stability. Neuron. 2008;58:210–222. doi: 10.1016/j.neuron.2008.03.019. [DOI] [PubMed] [Google Scholar]
  • 26.Hortsch M., Paisley K.L., Tian M.Z., Qian M., Bouley M., Chandler R. The axonal localization of large Drosophila ankyrin2 protein isoforms is essential for neuronal functionality. Mol. Cell. Neurosci. 2002;20:43–55. doi: 10.1006/mcne.2002.1113. [DOI] [PubMed] [Google Scholar]
  • 27.Pielage J., Cheng L., Fetter R.D., Carlton P.M., Sedat J.W., Davis G.W. A presynaptic giant ankyrin stabilizes the NMJ through regulation of presynaptic microtubules and transsynaptic cell adhesion. Neuron. 2008;58:195–209. doi: 10.1016/j.neuron.2008.02.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Otsuka A.J., Boontrakulpoontawee P., Rebeiz N., Domanus M., Otsuka D., Velamparampil N., Chan S., Vande Wyngaerde M., Campagna S., Cox A. Novel UNC-44 AO13 ankyrin is required for axonal guidance in C. elegans, contains six highly repetitive STEP blocks separated by seven potential transmembrane domains, and is localized to neuronal processes and the periphery of neural cell bodies. J. Neurobiol. 2002;50:333–349. doi: 10.1002/neu.10036. [DOI] [PubMed] [Google Scholar]
  • 29.Kordeli E., Davis J., Trapp B., Bennett V. An isoform of ankyrin is localized at nodes of Ranvier in myelinated axons of central and peripheral nerves. J. Cell. Biol. 1990;110:1341–1352. doi: 10.1083/jcb.110.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Islam R., Kristansen L.V., Romani S., Garcia-Alonso L., Hortsch M. Activation of EGF receptor kinase by L1-mediated homophilic cell interactions. Mol. Biol. Cell. 2004;15:1509–1518. doi: 10.1091/mbc.E03-05-0333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Garcia-Alonso L., Romani S., Jimenez F. The EGF and FGF receptors mediate neuroglian function to control growth cone decisions during sensory axon guidance in Drosophila. Neuron. 2000;28:741–752. doi: 10.1016/S0896-6273(00)00150-1. [DOI] [PubMed] [Google Scholar]
  • 32.Kristiansen L.V., Velasquez E., Romani S., Baars S., Berezin V., Bock E., Hortsch M., Garcia-Alonso L. Genetic analysis of an overlapping functional requirement for L1- and NCAM-type proteins during sensory axon guidance in Drosophila. Mol. Cell. Neurosci. 2005;28:141–152. doi: 10.1016/j.mcn.2004.09.003. [DOI] [PubMed] [Google Scholar]
  • 33.Nishimura K., Yoshihara F., Tojima T., Ooashi N., Yoon W., Mikoshiba K., Bennett V., Kamiguchi H. L1-dependent neuritogenesis involves ankyrinB that mediates L1-CAM coupling with retrograde actin flow. J. Cell. Biol. 2003;163:1077–1088. doi: 10.1083/jcb.200303060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Davey F., Hill M., Falk J., Sans N., Gunn-Moore F.J. Synapse associated protein 102 is a novel binding partner to the cytoplasmic terminus of neurone-glial related cell adhesion molecule. J. Neurochem. 2005;94:1243–1253. doi: 10.1111/j.1471-4159.2005.03271.x. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES