Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1984 Nov;46(2):372–376. doi: 10.1128/iai.46.2.372-376.1984

Mechanisms of invasion and replication of the intracellular stage in Trypanosoma cruzi.

R E McCabe, J S Remington, F G Araujo
PMCID: PMC261541  PMID: 6437980

Abstract

Amastigotes obtained from spleens of mice infected with different strains of Trypanosoma cruzi were examined for their ability to invade macrophages and L929 cells and to initiate infection in mice. Both types of cells were readily invaded by organisms of the strains Y, MR, and Tulahuen. Organisms of the CL strain were taken up by both types of cells at a rate that was significantly lower than that for organisms of the other strains. However, all strains multiplied intracellularly. Activated macrophages inhibited the replication of intracellular organisms. Treatment of normal macrophages with cytochalasin B, trypsin, chymotrypsin, or pronase significantly inhibited phagocytosis, but the inhibitory effect was reversible. Mice injected with spleen amastigotes developed parasitemia and died of the infection. These results demonstrate that spleen amastigotes are able to infect, survive, and replicate within professional and nonprofessional phagocytes and to initiate infection in vivo. Interiorization of spleen amastigotes is by phagocytosis and is dependent upon a protease-sensitive receptor(s) on the cell surfaces of host macrophages.

Full text

PDF
372

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcantara A., Brener Z. The in vitro interaction of Trypanosoma cruzi bloodstream forms and mouse peritoneal macrophages. Acta Trop. 1978 Sep;35(3):209–219. [PubMed] [Google Scholar]
  2. Alcantara A., Brener Z. Trypanosoma cruzi: role of macrophage membrane components in the phagocytosis of bloodstream forms. Exp Parasitol. 1980 Aug;50(1):1–6. doi: 10.1016/0014-4894(80)90002-8. [DOI] [PubMed] [Google Scholar]
  3. Araujo F. G., Nascimento E. Trypanosoma cruzi infection in mice chronically infected with Toxoplasma gondii. J Parasitol. 1977 Dec;63(6):1120–1121. [PubMed] [Google Scholar]
  4. Axline S. G., Reaven E. P. Inhibition of phagocytosis and plasma membrane mobility of the cultivated macrophage by cytochalasin B. Role of subplasmalemmal microfilaments. J Cell Biol. 1974 Sep;62(3):647–659. doi: 10.1083/jcb.62.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BRENER Z. (COMPARATIVE STUDIES OF DIFFERENT STRAINS OF TRYPANOSOMA CRUZI.) Ann Trop Med Parasitol. 1965 Mar;59:19–26. doi: 10.1080/00034983.1965.11686277. [DOI] [PubMed] [Google Scholar]
  6. Brener Z. Biology of Trypanosoma cruzi. Annu Rev Microbiol. 1973;27:347–382. doi: 10.1146/annurev.mi.27.100173.002023. [DOI] [PubMed] [Google Scholar]
  7. Brener Z. Immunity to Trypanosoma cruzi. Adv Parasitol. 1980;18:247–292. doi: 10.1016/s0065-308x(08)60401-7. [DOI] [PubMed] [Google Scholar]
  8. Budzko D. B., Kierszenbaum F. Isolation of Trypanosoma cruzi from blood. J Parasitol. 1974 Dec;60(6):1037–1038. [PubMed] [Google Scholar]
  9. Carvalho R. M., Meirelles M. N., de Souza W., Leon W. Isolation of the intracellular stage of Trypanosoma cruzi and its interaction with mouse macrophages in vitro. Infect Immun. 1981 Aug;33(2):546–554. doi: 10.1128/iai.33.2.546-554.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hudson L. Immunobiology of Trypanosoma cruzi infection and Chagas's disease. Trans R Soc Trop Med Hyg. 1981;75(4):493–498. doi: 10.1016/0035-9203(81)90184-x. [DOI] [PubMed] [Google Scholar]
  11. Kipnis T. L., Calich V. L., da Silva W. D. Active entry of bloodstream forms of Trypanosoma cruzi into macrophages. Parasitology. 1979 Feb;78(1):89–98. doi: 10.1017/s0031182000048617. [DOI] [PubMed] [Google Scholar]
  12. Kress Y., Tanowitz H., Bloom B., Wittner M. Trypanosoma cruzi: infection of normal and activated mouse macrophages. Exp Parasitol. 1977 Apr;41(2):385–396. doi: 10.1016/0014-4894(77)90110-2. [DOI] [PubMed] [Google Scholar]
  13. McCabe R. E., Araujo F. G., Remington J. S. Ketoconazole protects against infection with Trypanosoma cruzi in a murine model. Am J Trop Med Hyg. 1983 Sep;32(5):960–962. doi: 10.4269/ajtmh.1983.32.960. [DOI] [PubMed] [Google Scholar]
  14. McLeod R., Remington J. S. Studies on the specificity of killing of intracellular pathogens by macrophages. Cell Immunol. 1977 Nov;34(1):156–174. doi: 10.1016/0008-8749(77)90238-6. [DOI] [PubMed] [Google Scholar]
  15. Melo R. C., Brener Z. Tissue tropism of different Trypanosoma cruzi strains. J Parasitol. 1978 Jun;64(3):475–482. [PubMed] [Google Scholar]
  16. Nogueira N., Cohn Z. Trypanosoma cruzi: mechanism of entry and intracellular fate in mammalian cells. J Exp Med. 1976 Jun 1;143(6):1402–1420. doi: 10.1084/jem.143.6.1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sooksri V., Inoki S. Electron microscopic studies on penetration and development of Trypanosoma cruzi in HeLa cells. Biken J. 1972 Sep;15(3):179–191. [PubMed] [Google Scholar]
  18. Williams D. M., Sawyer S., Remington J. S. Role of activated macrophages in resistance of mice to infection with Trypanosoma cruzi. J Infect Dis. 1976 Dec;134(6):610–623. doi: 10.1093/infdis/134.6.610. [DOI] [PubMed] [Google Scholar]
  19. YAEGER R. G., MILLER O. N. Effect of malnutrition on susceptibility of rats to Trypanosoma cruzi. I. Thiamine deficiency. Exp Parasitol. 1960 Jun;9:215–222. doi: 10.1016/0014-4894(60)90027-8. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES