Abstract
Aggregation of bacteria by zinc and lysozyme was studied and compared with aggregation induced by a high-molecular-weight salivary agglutinin. Each ligand was found to exhibit a unique profile of properties when examined by both a microradiochemical centrifugation assay and a turbidimetric assay. Significant differences in rate of aggregation and bacterial species specificity were noted. Zinc- and lysozyme-mediated aggregations were shown to be calcium independent and to proceed rapidly at 0 degree C, in contrast to the salivary agglutinin. Zinc produced large, asymmetric aggregates, saliva produced intermediate-sized aggregates, and lysozyme produced the smallest aggregates. These size differences are consistent with many of the observed reaction properties.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ericson T., Pruitt K., Wedel H. The reaction of salivary substances with bacteria. J Oral Pathol. 1975 Dec;4(6):307–323. doi: 10.1111/j.1600-0714.1975.tb01748.x. [DOI] [PubMed] [Google Scholar]
- Ericson T., Rundegren J. Characterization of a salivary agglutinin reacting with a serotype c strain of Streptococcus mutans. Eur J Biochem. 1983 Jun 15;133(2):255–261. doi: 10.1111/j.1432-1033.1983.tb07456.x. [DOI] [PubMed] [Google Scholar]
- Haley J. V. Zinc sulfate and wound healing. J Surg Res. 1979 Sep;27(3):168–174. doi: 10.1016/0022-4804(79)90127-6. [DOI] [PubMed] [Google Scholar]
- Iacono V. J., MacKay B. J., DiRienzo S., Pollock J. J. Selective antibacterial properties of lysozyme for oral microorganisms. Infect Immun. 1980 Aug;29(2):623–632. doi: 10.1128/iai.29.2.623-632.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iacono V. J., Taubman M. A., Smith D. J., Moreno E. C. A spectrophotometric procedure for quantitation of antibody directed to bacterial antigens. Immunochemistry. 1976 Mar;13(3):235–243. doi: 10.1016/0019-2791(76)90221-4. [DOI] [PubMed] [Google Scholar]
- Kashket S., Donaldson C. G. Saliva-induced aggregation of oral streptococci. J Bacteriol. 1972 Dec;112(3):1127–1133. doi: 10.1128/jb.112.3.1127-1133.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laible N. J., Germaine G. R. Adsorption of lysozyme from human whole saliva by Streptococcus sanguis 903 and other oral microorganisms. Infect Immun. 1982 Apr;36(1):148–159. doi: 10.1128/iai.36.1.148-159.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malamud D., Appelbaum B., Kline R., Golub E. E. Bacterial aggregating activity in human saliva: comparisons of bacterial species and strains. Infect Immun. 1981 Mar;31(3):1003–1006. doi: 10.1128/iai.31.3.1003-1006.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rundegren J., Ericson T. Effect of calcium on reactions between a salivary agglutinin and a serotype c strain of Streptococcus mutans. J Oral Pathol. 1981 Aug;10(4):269–275. doi: 10.1111/j.1600-0714.1981.tb01273.x. [DOI] [PubMed] [Google Scholar]
- Schlievert P. S., Johnson W., Galask R. P. Bacterial growth inhibition by amniotic fluid. VI. Evidence for a zinc-peptide antibacterial system. Am J Obstet Gynecol. 1976 Aug 1;125(7):906–910. doi: 10.1016/0002-9378(76)90486-5. [DOI] [PubMed] [Google Scholar]
- Steiner J. C., Keller P. J. An electrophoretic analysis of the protein components of human parotid saliva. Arch Oral Biol. 1968 Oct;13(10):1213–1222. doi: 10.1016/0003-9969(68)90077-0. [DOI] [PubMed] [Google Scholar]
- Sugarman B. Effect of heavy metals on bacterial adherence. J Med Microbiol. 1980 May;13(2):351–354. doi: 10.1099/00222615-13-2-351. [DOI] [PubMed] [Google Scholar]

