Abstract
In a field experiment conducted on sandy soil in Florida during the 1993 season, rotation crops of castor (Ricinus communis), velvetbean (Mucuna deeringina), 'Mississippi Silver' cowpea (Vigna unguiculata), American jointvetch (Aeschynomene americana), 'Dehapine 51' cotton (Gossypium hirsutum), and 'SX-17' sorghum-sudangrass (Sorghum bicolor × S. sudanense) were effective in maintaining low population densities (<12/100 cm³ soil) of Meloidogyne incognita race 1, whereas high population densities (>450/100 cm³ soil) resulted after 'Clemson Spineless' okra (Hibiscus esculentus) and 'Kirby' soybean (Glycine max). Following a winter cover crop of rye (Secale cereale), densities of M. incognita following the six most effective rotation crops (1993 season) remained relatively low (≤32/100 cm³ soil) through midseason of an eggplant (Solanum melongena) crop planted in 1994, but increased by the end of the eggplant crop. The rotation crops planted during 1993 had little effect on yield of eggplant in 1994. Eggplant yield was inversely correlated with preplant densities (Pi) of Belonolaimus longicaudatus (r = -0.282; P ≤ 0.10; 46 dr), but not with Pi of M. incognita. A separate microplot experiment conducted in 1994 revealed that final densities (Pf) of M. incognita race 1 following 13 different crop cultivars were lower (P ≤ 0.05) than Pf following a 'Pioneer X304C' corn (Zea mays) control, but only 'Mississippi Silver' cowpea and 'Sesaco 16' sesame (Sesamum indicum) resulted in lower (P ≤ 0.05) Pf of Paratrichodorus minor than the corn control. It is critical that rotation crops intended for suppression of individual Meloidogyne spp. be evaluated for their response to other nematode pests as well.
Keywords: Aeschynomene americana, Belonolaimus longicaudatus, Criconemella spp., crop rotation, cropping system, eggplant, Glycine max, Gossypium hirsutum, Helicotylenchus dihystera, Hibiscus escutentus, Meloidogyne incognita, Mucuna deeringiana, nematode, nematode management, Paratrichodorus minor, Pratylenchus spp., Ricinus communis, Sesamum indicum, Solanum melongena, Sorghum bicolor, sustainable agriculture, Tagetes patula, Vigna unguiculata, Zea mays
Full Text
The Full Text of this article is available as a PDF (652.7 KB).