Abstract
The responses of second-stage juveniles (J2) of Meloidogyne incognita race 3 to calcium alginate pellets containing hyphae of the nematophagous fungi Monacrosporiura cionopagum, M. ellipsosporum, and Hirsutella rhossiliensis were examined using cylinders (38-mm-diam., 40 or 72 mm long) of sand (94% <250-μm particle size). Sand was wetted with a synthetic soil solution (10% moisture, 0.06 bar water potential). A layer of 10 or 20 pellets was placed 4 or 20 mm from one end of the cylinder. After 3, 5, or 13 days, J2 were put on both ends, on one end, or in the center; J2 were extracted from 8-ram-thick sections 1 or 2 days later. All three fungal pellets were repellent; pellets without fungi were not. Aqueous extracts of all pellets and of sand in which fungal pellets had been incubated were repellent, but acetone extracts redissolved in water were not. Injection of CO₂ (20 μl/minute) into the pellet layer attracted J2 and increased fungal-induced mortality. In vials containing four randomly positioned pellets and 17 cm³ of sand or loamy sand, the three fungi suppressed the invasion of cabbage roots by M. javanica J2. Counts of healthy and parasitized nematodes observed in roots or extracted from soil indicated that, in the vial assay, the failure of J2 to penetrate roots resulted primarily from parasitism rather than repulsion. Data were similar whether fungal inoculum consisted of pelletized hyphae or fungal-colonized Steinernema glaseri. Thus, the results indicate that nematode attractants and repellents can have major or negligible effects on the biological control efficacy of pelletized nematophagous fungi. Factors that might influence the importance of substances released by the pellets include the strength, geometry, and duration of gradients; pellet degradation by soil microflora; the nematode species involved; and attractants released by roots.
Keywords: alginate, behavior, biological control, chemotaxis, Hirsutella rhossiliensis, Meloidogyne incognita, Meloidogyne javanica, Monacrosporium cionopagum, Monacrosporium ellipsosporum, nematode, nematophagous fungi, Steinernema glaseri
Full Text
The Full Text of this article is available as a PDF (1.3 MB).