Skip to main content
Clinical Microbiology Reviews logoLink to Clinical Microbiology Reviews
. 2009 Jan;22(1):161–182. doi: 10.1128/CMR.00036-08

AmpC β-Lactamases

George A Jacoby 1,*
PMCID: PMC2620637  PMID: 19136439

Abstract

Summary: AmpC β-lactamases are clinically important cephalosporinases encoded on the chromosomes of many of the Enterobacteriaceae and a few other organisms, where they mediate resistance to cephalothin, cefazolin, cefoxitin, most penicillins, and β-lactamase inhibitor-β-lactam combinations. In many bacteria, AmpC enzymes are inducible and can be expressed at high levels by mutation. Overexpression confers resistance to broad-spectrum cephalosporins including cefotaxime, ceftazidime, and ceftriaxone and is a problem especially in infections due to Enterobacter aerogenes and Enterobacter cloacae, where an isolate initially susceptible to these agents may become resistant upon therapy. Transmissible plasmids have acquired genes for AmpC enzymes, which consequently can now appear in bacteria lacking or poorly expressing a chromosomal blaAmpC gene, such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Resistance due to plasmid-mediated AmpC enzymes is less common than extended-spectrum β-lactamase production in most parts of the world but may be both harder to detect and broader in spectrum. AmpC enzymes encoded by both chromosomal and plasmid genes are also evolving to hydrolyze broad-spectrum cephalosporins more efficiently. Techniques to identify AmpC β-lactamase-producing isolates are available but are still evolving and are not yet optimized for the clinical laboratory, which probably now underestimates this resistance mechanism. Carbapenems can usually be used to treat infections due to AmpC-producing bacteria, but carbapenem resistance can arise in some organisms by mutations that reduce influx (outer membrane porin loss) or enhance efflux (efflux pump activation).

INTRODUCTION

The first bacterial enzyme reported to destroy penicillin was the AmpC β-lactamase of Escherichia coli, although it had not been so named in 1940 (1). Swedish investigators began a systematic study of the genetics of penicillin resistance in E. coli in 1965. Mutations with stepwise-enhanced resistance were termed ampA and ampB (84, 85). A mutation in an ampA strain that resulted in reduced resistance was then designated ampC. ampA strains overproduced β-lactamase, suggesting a regulatory role for the ampA gene (180). ampB turned out not to be a single locus, and such strains were found to have an altered cell envelope (236). ampC strains made little if any β-lactamase, suggesting that ampC was the structural gene for the enzyme (46). Most of the amp nomenclature has changed over the years, but the designation ampC has persisted. The sequence of the ampC gene from E. coli was reported in 1981 (144). It differed from the sequence of penicillinase-type β-lactamases such as TEM-1 but, like them, had serine at its active site (161). In the Ambler structural classification of β-lactamases (7), AmpC enzymes belong to class C, while in the functional classification scheme of Bush et al. (47), they were assigned to group 1.

DISTRIBUTION

When the functional classification scheme was published in 1995, chromosomally determined AmpC β-lactamases in Enterobacteriaceae and also in a few other families were known (47). Since then, the number of sequenced bacterial genes and genomes has grown enormously. In GenBank, ampC genes are included in COG 1680, where COG stands for cluster of orthologous groups. COG 1680 comprises other penicillin binding proteins as well as class C β-lactamases and includes proteins from archaea as well as bacteria, gram-positive as well as gram-negative organisms, strict anaerobes along with facultative ones, and soil and water denizens as well as human pathogens, such as species of Legionella and Mycobacterium. Sequence alone is insufficient to differentiate an AmpC β-lactamase from ubiquitous low-molecular-weight penicillin binding proteins involved in cell wall biosynthesis, such as d-peptidase (d-alanyl-d-alanine carboxypeptidase/transpeptidase). Both have the same general structure and share conserved sequence motifs near an active-site serine (149, 162). E. coli even produces a β-lactam binding protein, AmpH, which is related to AmpC structurally but lacks β-lactamase activity (121). The AmpC name is not trustworthy since several enzymes so labeled in the literature actually belong to class A (177, 337). Cephalosporinase activity is not reliable either, since some β-lactamases with predominant activity on cephalosporins belong to class A (97, 205, 278, 298). Accordingly, the conservative listing of AmpC β-lactamases in Table 1 includes proteins with the requisite structure from organisms that have been demonstrated to possess appropriate AmpC-type β-lactamase activity. It is undoubtedly incomplete. For example, organisms not yet shown to produce a functional AmpC-type enzyme but with identified ampC genes include such diverse bacteria as Agrobacterium tumefaciens (110), Coxiella burnetii (GenBank accession number YP_001424134), Legionella pneumophila (56), Rickettsia felis (239), and Sinorhizobium meliloti (127). For other organisms, supportive MIC or enzymatic but not structural data are available for the presence of AmpC β-lactamase, including Enterobacter sakazakii (258), Ewingella americana (311), Providencia rettgeri (207), and several species of Serratia (306, 307) and Yersinia (215, 288, 313). The phylum Proteobacteria contains the largest number, but at least one acid-fast actinobacterium also produces AmpC β-lactamase. Sequence variation occurs within each type. For example, more than 25 varieties of AmpC β-lactamase that share ≥94% protein sequence identity have been described for Acinetobacter spp. (137; G. Bou et al., personal communication), and GenBank contains similar multiple listings for E. coli, Enterobacter cloacae, Pseudomonas aeruginosa, and other organisms. Some frequently encountered Enterobacteriaceae are conspicuous by their absence. Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis, and Salmonella spp. (31) lack a chromosomal blaAmpC gene, as do Citrobacter amalonaticus (328), Citrobacter farmeri, Citrobacter gillenii (224), Citrobacter koseri (formerly Citrobacter diversus and Levinea malonatica), Citrobacter rodentium, Citrobacter sedlakii (252), Edwardsiella hoshinae, Edwardsiella ictaluri (312), Kluyvera ascorbata (138, 305), Kluyvera cryocrescens (72), Plesiomonas shigelloides (9), Proteus penneri (175), Proteus vulgaris (60), Rahnella aquatilis (30, 308), Yersinia pestis, and Yersinia pseudotuberculosis (313) as well as, probably, Escherichia hermannii (91), Francisella tularensis (27), Shewanella algae (123), and Stenotrophomonas maltophilia (111). However, since blaAmpC genes occur on transmissible plasmids, the clinical microbiologist needs to consider this resistance mechanism whatever the identification of an organism.

TABLE 1.

Taxonomy of bacteria expressing chromosomally determined AmpC β-lactamases

Phylum, class, and order Genus and species GenBank protein accession no. Reference(s)
Actinobacteria Mycobacterium smegmatis YP_888266 92
Proteobacteria
    Alphaproteobacteria Ochrobactrum anthropi CAC04522 127, 226
Rhodobacter sphaeroides YP_355256 24
Chromobacterium violaceum NP_900980 87
    Betaproteobacteria
        Neisseriales Laribacter hongkongensis AAT46346 167
    Gammaproteobacteria
        Aeromonadales Aeromonas caviae AAM46773 95
Aeromonas hydrophila YP_857635 11, 334
Aeromonas jandaeia AAA83416 272
Aeromonas salmonicida ABO89301 120
Aeromonas veronii bv. sobria CAA56561 333, 334
        Enterobacteriales Buttiauxella agrestis AAN17791 90
Citrobacter braakii AAM11668 223
Citrobacter freundii AAM93471 178
Citrobacter murliniae AAM11664 12, 223
Citrobacter youngae CAD32304 12
Citrobacter werkmanii AAM11670 223
Edwardsiella tarda ABO48510 312
Enterobacter aerogenes AAO16528 266
Enterobacter asburiae CAC85157 279
Enterobacter cancerogenus AAM11666 223
Enterobacter cloacae P05364 101
Enterobacter dissolvens CAC85359 279
Enterobacter hormaechei CAC85357 279
Enterobacter intermediusb CAC85358 279
Erwinia rhapontici AAP40275 225
Escherichia albertii EDS93081 310
Escherichia fergusonii AAM11671 223
Escherichia coli NP_418574 144
Hafnia alvei AAF86691 107, 320
Morganella morganii AAC68582 260, 264
Providencia stuartii CAA76739 68
Serratia marcescens AAK64454 148
Shigella boydii YP_410551 291
Shigella dysenteriaec YP_405772 291
Shigella flexneric YP_691594 291
Shigella sonnei YP_313059 291
Yersinia enterocolitica YP_001006653 293, 294, 296
Yersinia mollaretii ZP_00826692 309
Yersinia ruckeri ABA70720 198, 288
        Oceanospirillales Chromohalobacter BAD16740 321
        Pseudomonadale Acinetobacter baumannii CAB77444 39
Acinetobacter baylyi CAL25116 26
Pseudomonas aeruginosa NP_252799 281
Pseudomonas fluorescens YP_349452 209
Psychrobacter immobilis CAA58569 88
        Xanthomonadales Lysobacter lactamgenus CAA39987 159
a

Originally named Aeromonas sobria.

b

Alternate name, Kluyvera intermedia.

c

Shigella strains with enhanced virulence and a 190-kb chromosomal deletion that includes blaAmpC have been described (208).

PHYSICAL AND ENZYMATIC PROPERTIES

AmpC enzymes typically have molecular masses of 34 to 40 kDa and isoelectric points of >8.0, although the isoelectric points of plasmid-mediated FOX enzymes are lower (6.7 to 7.2) (254), and an AmpC enzyme from Morganella morganii has an isoelectric point of 6.6 (264). The enzymes are located in the bacterial periplasm, with the exception of the AmpC β-lactamase of Psychrobacter immobilis, which is secreted mainly into the external medium (88). They are active on penicillins but even more active on cephalosporins and can hydrolyze cephamycins such as cefoxitin and cefotetan; oxyiminocephalosporins such as ceftazidime, cefotaxime, and ceftriaxone; and monobactams such as aztreonam but at a rate <1% of that of benzylpenicillin (Table 2, which also shows data for class A and D β-lactamases for comparison). Although the hydrolysis rate for such substrates is low due to slow deacylation (99), the enzyme affinity, as reflected by a low Km, is high (Table 3), a factor that becomes important at low substrate concentrations. The hydrolysis rates for cefepime, cefpirome, and carbapenems are also very low, and the estimated Km values for cefepime and cefpirome are high, reflecting lower enzyme affinity (283).

TABLE 2.

Physical and kinetic parameters

Enzyme class Source Locationa Molecular mass (kDa) pI Relative kcat
Reference(s)
Benzylpenicillin Ampicillin Cefazolin Cephaloridine Cefoxitin Cefotaxime Imipenemc
C E. cloacae Chr 39.2 8.4 100 5 21,400 5,000 0.43 0.11 0.02 99, 100, 211
C. freundii Chr 39.9 100 21 16,100 2,260 1 0.05 0.05 99, 100, 287
E. coli K-12 Chr 39.6 8.7 100 9 333 289 0.44 0.38 0.02 99, 100, 144, 212
S. marcescens Chr 37 9.5 100 0.6 1,730 1,470 0.02 2.3 0.001 99, 100, 148
P. aeruginosa Chr 34 8.4 100 6 b 145 0.015 0.20 0.03 99, 100, 102, 221
ACT-1 P 39.4 9.0 100 1.8 1,020 >455 0.67 0.09 0.02 25, 41
MIR-1 P 39.2 8.4 100 3.9 b 1,540 4.6 19.3 0.09 25, 248
CMY-1 P 39.9 8.0 100 3.5 2,500 1,190 0.38 0.08 0.02 20, 25
CMY-2 P 38.8 9.0 100 3.9 b 1,536 1.64 0.29 0.24 22, 25
A TEM-2 P 22.0 5.4 100 95 34 315 204
B. licheniformis Chr 29.5 100 68 14 29 204
D OXA-29 Chr 28.5 >9 100 164 17 0.26 NH 96
a

Chr, chromosomal; P, plasmid.

b

Biphasic kinetics.

c

NH, no hydrolysis detected.

TABLE 3.

Enzyme kinetics

Enzyme class Source Km (μM)
Reference(s)
Benzylpenicillin Ampicillin Cefazolin Cephaloridine Cefoxitin Cefotaxime Aztreonam Imipenemb
C E. cloacae 0.6 0.4 1,500 70 0.024 0.01 0.0012 0.04 99, 100
C. freundii 0.4 0.2 600 35 0.250 0.005 0.0014 0.085 99, 100
E. coli K-12 4.4 3.5 400 170 0.650 1.7 0.0012 0.8 99, 100
S. marcescens 1.7 0.01 540 275 0.3 12 0.058 0.06 99, 100, 148
P. aeruginosa 1.7 0.5 a 20 0.05 0.2 0.050 0.026 99, 100
ACT-1 2.1 1.7 430 >200 0.5 0.07 0.012 0.37 25
MIR-1 0.4 0.16 a 93 0.75 4 0.004 0.15 25
CMY-1 1 2.2 54 110 0.055 0.015 0.01 0.05 25
CMY-2 0.4 0.16 a 93 0.07 0.0012 <0.003 ND 25
A TEM-2 15-20 22 680 2,100 3,000 204
B. licheniformis 76 143 12 135 205 204
D OXA-29 10 16 30 128 210 NH 96
a

Biphasic kinetics.

b

ND, not determined; NH, no hydrolysis detected.

With preferred cephalosporin substrates, the turnover rate of the E. cloacae P99 β-lactamase is diffusion limited rather than catalysis limited, implying that AmpC enzymes have evolved to maximal efficiency (45). Such data also suggest that AmpC β-lactamase evolved to deal with cephalosporins rather than for some other cellular function, although there is some evidence to suggest that these enzymes play a morphological role (121).

Inhibitors of class A enzymes such as clavulanic acid, sulbactam, and tazobactam have much less effect on AmpC β-lactamases, although some are inhibited by tazobactam or sulbactam (48, 157, 218). AmpC β-lactamases are poorly inhibited by p-chloromercuribenzoate and not at all by EDTA. Cloxacillin, oxacillin, and aztreonam, however, are good inhibitors (47).

STRUCTURE AND ESSENTIAL SITES

The known three-dimensional structures of AmpC enzymes are very similar (Fig. 1). There is an α-helical domain on one side of the molecule (Fig. 1, left) and an α/β domain on the other (Fig 1, right). The active site lies in the center of the enzyme at the left edge of the five-stranded β-sheet with the reactive serine residue at the amino terminus of the central α-helix (162, 190). The active site can be further subdivided into an R1 site, accommodating the R1 side chain of the β-lactam nucleus, and an R2 site for the R2 side chain (Fig. 2). The R1 site is bounded by the Ω-loop, while the R2 site is enclosed by the R2 loop containing the H-10 and H-11 helices. Overall, the AmpC structure is similar to that of class A β-lactamases (and dd-peptidase) except that the binding site is more open in class C enzymes, reflecting their greater ability to accommodate the bulkier side chains of cephalosporins. Key catalytic residues in addition to Ser64 for AmpC enzymes include Lys67, Tyr150, Asn152, Lys315, and Ala318, with substitutions at these sites lowering enzymatic activity dramatically (54). In the folded protein, most of these essential residues are found at the active site, with Lys67 hydrogen bonded to Ser64 and Tyr150 acting as a transient catalytic base (79).

FIG. 1.

FIG. 1.

Diagram of AmpC from E. coli complexed with acylated ceftazidime (PDB accession number 1IEL) (265) created with Cn3CD, version 4.1 (available at http://www.ncbi.nlm.nih.gov). The R2 loop at the top of the molecule and conserved residues S64, K67, Y150, N152, K315, and A318 are shown in yellow. β-Strands are gold, and α-helixes are green.

FIG. 2.

FIG. 2.

Schematic representation of ceftazidime with the R1 side chain at C7 and the R2 side chain at C3. (Adapted from reference 158 with permission from Blackwell Publishing Ltd.)

REGULATION

In many Enterobacteriaceae, AmpC expression is low but inducible in response to β-lactam exposure. The induction mechanism is complex (118, 139, 140). The disruption of murein biosynthesis by a β-lactam agent leads to an accumulation of N-acetylglucosamine-1,6-anhydro-N-acetylmuramic acid oligopeptides. The N-acetylglucosamine moiety is removed to produce a series of 1,6-anhydro-N-acetylmuramic acid tri-, tetra-, and pentapeptides. These oligopeptides compete with oligopeptides of UDP-N-acetylmuramic acid for a binding site on AmpR, a member of the LysR transcriptional regulator family. Displacement of the UDP-N-acetylmuramic acid peptides signals a conformational change in AmpR, which activates the transcription of ampC. In addition, the cell has an enzyme, AmpD, a cytoplasmic N-acetyl-muramyl-l-alanine amidase, that removes stem peptides from the 1,6-anhydro-N-acetylmuramic acid and N-acetylglucosamine-1,6-anhydro-N-acetylmuramic acid oligopeptide derivatives, thus reducing their concentrations and preventing the overexpression of AmpC.

The most common cause of AmpC overexpression in clinical isolates is a mutation in ampD leading to AmpC hyperinducibility or constitutive hyperproduction (289). AmpR mutations are less common but can also result in high-constitutive or hyperinducible phenotypes (118, 153, 165). Least common are mutations in AmpG, which result in constitutive low-level expression. AmpG is an inner membrane permease that transports the oligopeptides involved in cell wall recycling and AmpC regulation into the cytosol (179).

Different organisms add additional features to AmpC regulation. E. coli lacks an ampR gene (129). Consequently, AmpC in E. coli is noninducible but is regulated by promoter and attenuator mechanisms (145), as is AmpC production in Shigella (33). Acinetobacter baumannii also lacks an ampR gene so that its AmpC β-lactamase is noninducible (39). AmpC in Serratia marcescens is regulated by ampR, but the ampC transcript has an unusual untranslated region of 126 bases forming a stem-loop structure that influences the transcript half-life (191). P. aeruginosa PAO1 has three ampD genes, explaining the stepwise upregulation of AmpC production seen in this organism with the successive inactivation of each ampD gene (151). The multiple ampD loci contribute to virulence since a P. aeruginosa strain partially derepressed by the inactivation of one ampD allele remains fully virulent, while double or triple ampD mutants lose the ability to compete in a mouse model of systemic infection (219). Other aspects of AmpC regulation in P. aeruginosa are also more complex than that in the Enterobacteriaceae. AmpR is involved in the regulation of other genes besides AmpC (164), an ampE gene encoding a cytoplasmic membrane protein acting as a sensory transducer has a role in ampC expression as part of an ampDE operon (150), and the CreBCD system as well as dacB, encoding a nonessential penicillin binding protein, are involved in AmpC hyperproduction as well (219a).

β-Lactams differ in their inducing abilities (184, 189, 285, 302). Benzylpenicillin, ampicillin, amoxicillin, and cephalosporins such as cefazolin and cephalothin are strong inducers and good substrates for AmpC β-lactamase. Cefoxitin and imipenem are also strong inducers but are much more stable for hydrolysis (Table 4). Cefotaxime, ceftriaxone, ceftazidime, cefepime, cefuroxime, piperacillin, and aztreonam are weak inducers and weak substrates but can be hydrolyzed if enough enzyme is made. Consequently, MICs of weakly inducing oxyimino-β-lactams are dramatically increased with AmpC hyperproduction. Conversely, MICs of agents that are strong inducers show little change with regulatory mutations because the level of induced ampC expression is already high (Table 4). β-Lactamase inhibitors are also inducers, especially clavulanate, which has little inhibitory effect on AmpC β-lactamase activity (336) but can paradoxically appear to increase AmpC-mediated resistance in an inducible organism (160). The inducing effect of clavulanate is especially important for P. aeruginosa, where clinically achieved concentrations of clavulanate by inducing AmpC expression have been shown to antagonize the antibacterial activity of ticarcillin (181).

TABLE 4.

Susceptibility of inducible and stably derepressed clinical isolatesa

Antimicrobial agent Geometric mean MIC (μg/ml)
E. cloacae
P. aeruginosa
Inducible Fully derepressed Inducible Partially derepressed Fully derepressed
Cefotaxime 0.31 215 19.5 132 >323
Ceftazidime 0.23 64 1.3 3.3 25.4
Ceftriaxone 0.44 430 4.3 313 >323
Aztreonam 0.06 38 4.3 5.6 50.8
Cefoxitin 256 304
Imipenem 0.56 0.71 1.3 2.5 2.5
a

Adapted from reference 184 with kind permission from Springer Science and Business Media.

The AmpC enzyme in Aeromonas spp. is controlled, along with two other chromosomally encoded β-lactamases, not by an AmpR-type system but by a two-component regulator, termed brlAB in Aeromonas hydrophila (5, 234). BrlB is a histidine sensor kinase, the regulated β-lactamase genes are preceded by a short sequence tag (TTCAC), and an inner membrane protein is also involved in regulation, but the chemical signal for induction is not yet known (10). E. coli has a homologous regulatory system, and there is some evidence that two-component regulators also play a role in the expression of E. coli ampC (128).

PUMPS AND PORINS

In addition to the amount and intrinsic activity of β-lactamase, the rate at which the substrate is delivered to the enzyme is an important determinant of the resistance spectrum. The concentration of β-lactam substrate in the periplasm is a function of the permeability of the cell's outer membrane, in particular the presence of porin channels through which β-lactams penetrate and of efflux pumps, which transport them out of the cell. At one time, the binding of substrate to AmpC β-lactamase was entertained as a mechanism to explain resistance to β-lactams that appeared to be poorly hydrolyzed (316). Vu and Nikaido pointed out, however, that at the concentration of β-lactams in the periplasm needed to inhibit target penicillin binding proteins, AmpC β-lactamases can hydrolyze cephalosporins despite a low Vmax if the substrate also has a low Km (330). Decreasing the number of porin entry channels or increasing efflux pump expression can lower influx and further augment enzyme efficiency. Thus, carbapenem resistance in clinical isolates of P. aeruginosa involves various combinations of overproduction of AmpC β-lactamase, decreased production of the OprD porin channel for imipenem entry, and activation of MexAB-OprM and other efflux systems (114, 163, 185, 268). Also, cephalosporins with both positive and negative charges (i.e., zwitterionic molecules) such as cefepime and cefpirome have the advantage of penetrating the outer bacterial membrane more rapidly than those with a net positive charge, such as cefotaxime and ceftriaxone, thus more easily reaching their lethal targets without β-lactamase inactivation (233).

PHYLOGENY

The serine β-lactamases are ancient enzymes estimated to have originated more than 2 billion years ago. A structure-based phylogeny indicates that the divergence of AmpC-type enzymes predated the divergence of class A and class D β-lactamases from a common ancestor (116). Figure 3 provides an overview of the phylogenetic relationship between the enzymes listed in Table 1. As would be expected, AmpC enzymes from organisms belonging to the same genus cluster together, while the AmpC β-lactamases of Enterobacteriaceae, Pseudomonas, and Acinetobacter are more distantly related.

FIG. 3.

FIG. 3.

Phylogram of AmpC enzymes listed in Table 1 constructed with ClustalX (available at http://bips.u-strasbg.fr/fr/Documentation/ClustalX/).

PLASMID-MEDIATED AmpC β-LACTAMASES

Plasmid-encoded AmpC genes have been known since 1989 (Table 5) (254, 335). They have been found around the world in nosocomial and nonnosocomial isolates, having been most easily detected in those enterobacteria not expected to produce an AmpC β-lactamase. Minor differences in amino acid sequence have given rise to families. Forty-three CMY alleles are currently known (http://www.lahey.org/Studies/), and in GenBank, sequence data can be found (some of it unpublished) for seven varieties of FOX; four varieties of ACC, LAT, and MIR; three varieties of ACT and MOX; and two varieties of DHA. Some of these varieties are determined by chromosomal genes and represent possible progenitors for the plasmid-determined enzymes.

TABLE 5.

Chronology and homology of plasmid-mediated AmpC β-lactamases

AmpC β-lactamase Country of origin Publication yr Species of first isolate Likely source of AmpC gene Similarity (%) Reference(s)
CMY-1 South Korea 1989 K. pneumoniae A. hydrophila 82 20, 23
CMY-2 Greece 1996 K. pneumoniae C. freundii 96 22
MIR-1 United States 1990 K. pneumoniae E. cloacae 99 142, 248
MOX-1 Japan 1993 K. pneumoniae A. hydrophila 80 134
LAT-1 Greece 1993 K. pneumoniae C. freundii 95 326
FOX-1 Argentina 1994 K. pneumoniae A. caviae 99 95, 109
DHA-1 Saudi Arabia 1997 S. enteriditis M. morganii 99 98
ACT-1 United States 1997 K. pneumoniae E. asburiae 98 41, 279
ACC-1 Germany 1999 K. pneumoniae H. alvei 99 21, 106
CFE-1 Japan 2004 E. coli C. freundii 99 229

As indicated in Table 5, the plasmid-determined enzymes are related, sometimes very closely, to chromosomally determined AmpC β-lactamases. CMY is represented twice since it has two quite different origins. Six current varieties (CMY-1, -8, -9, -10, -11, and -19) are related to chromosomally determined AmpC enzymes in Aeromonas spp., while the remainder (including CMY-2, the most common plasmid-mediated AmpC β-lactamase worldwide) are related to AmpC β-lactamases of Citrobacter freundii. The LAT enzymes have a similar origin, but of the four original LAT enzymes, improved sequencing disclosed that LAT-2 was identical to CMY-2, LAT-3 was identical to CMY-6, and LAT-4 was identical to LAT-1, which is the only one remaining unique (15).

Like the chromosomally determined AmpC β-lactamases, the plasmid-mediated enzymes confer resistance to a broad spectrum of β-lactams (Table 6) including penicillins, oxyimino-β-cephalosporins, cephamycins, and (variably) aztreonam. Susceptibility to cefepime, cefpirome, and carbapenems is little, if at all, affected. Note that ACC-1 is exceptional in not conferring resistance to cephamycins and is actually cefoxitin inhibited (21, 106).

TABLE 6.

In vitro susceptibilities of E. coli derivatives producing plasmid-encoded AmpC β-lactamases

Antimicrobial agent MIC (μg/ml) for derivatives producing:
ACC-1a ACT-1b CMY-1c CMY-2d CFE-1e DHA-1f FOX-1g LAT-1h MIR-1i MOX-1j
Ampicillin 2,048 >512 >128 1,000 >512
Piperacillin 32 32 128 64 >256 128
Temocillin 4 8 8 64
Cephalothin 2,048 >256 128 >512
Cefotaxime 8 ≤2 64 16 256 64 2 128 64 16
Ceftazidime 32 4 4 128 >256 64 8 >128 128
Cefoxitin 4 >256 256 256 128 128 64 ≥256
Cefotetan 2 16 256 64 32 128 ≥64 >512
Cefmetazole 128 64 256 4 ≥64 512
Moxalactam 1 8 2 0.5 1 64 >512
Aztreonam 1 4 16 64 64 16 1 64 128 16
Cefepime 0.25 ≤0.06 0.25 0.5 1 0.125 1
Cefpirome 1 2 0.5 1
Imipenem 0.13 1 0.25 0.5 0.5 ≤0.125 2 1 0.5
Meropenem 0.03 0.06 0.06 0.125
a

See reference 21.

b

See reference 41.

c

See reference 23.

d

See reference 22.

e

See reference 229.

f

See reference 98.

g

See reference 109.

h

See reference 326.

i

See reference 248.

j

See reference 134.

The genes for ACT-1, DHA-1, DHA-2, and CMY-13 are linked to ampR genes and are inducible (16, 93, 214, 274), while other plasmid-mediated AmpC genes are not, including other CMY alleles and apparently CFE-1 despite its linkage to an ampR gene (142, 229). Nonetheless, the level of expression of both inducible ACT-1 and noninducible MIR-1 is 33- to 95-fold higher than the level of expression of the chromosomally determined AmpC gene of E. cloacae thanks to a higher gene copy number for the plasmid-determined enzymes (2 copies for blaACT-1 and 12 copies for blaMIR-1) and greater promoter strength for the plasmid genes (8-fold increased from the hybrid MIR-1 promoter and 17-fold increased because of a single base change relative to the wild type in the ACT-1 promoter) (275, 276). AmpC plasmids lack ampD genes, but the level of ACT-1 expression is increased with the loss of chromosomal AmpD function (276).

An AmpD-deficient E. coli strain producing ACT-1 remains susceptible to imipenem (MIC, 2 μg/ml) (276), but imipenem MICs of ≥16 μg/ml have been found in clinical isolates of K. pneumoniae carrying ACT-1 plasmids associated with a loss of outer membrane porins (41). In a porin-deficient K. pneumoniae isolate, other plasmid-mediated AmpC enzymes also provide imipenem, ertapenem, and meropenem resistance (141). Such strains generally remain susceptible to cefepime but are otherwise also resistant to oxyimino-β-cephalosporins.

Plasmids carrying genes for AmpC β-lactamases often carry multiple other resistances including genes for resistance to aminoglycosides, chloramphenicol, quinolones, sulfonamide, tetracycline, and trimethoprim as well as genes for other β-lactamases such as TEM-1, PSE-1 (6), CTX-M-3 (55), SHV varieties (119), and VIM-1 (214). The AmpC gene is usually part of an integron but is not incorporated into a gene cassette with an affiliated 59-base element (273). Note that the same blaAmpC gene can be incorporated into different backbones on different plasmids (50).

A variety of genetic elements have been implicated in the mobilization of AmpC genes onto plasmids (Fig. 4). The insertion sequence ISEcp1 (or truncated versions thereof) is associated with many CMY alleles including CMY-2 (105, 115, 155), CMY-4 (228), CMY-5 (343), CMY-7 (135), CMY-12 (182), CMY-14 (182), CMY-15 (182), CMY-16 (69), CMY-21 (133), CMY-31 (GenBank accession number EU331425), and CMY-36 (GenBank accession number EU331426) as well as the β-lactamases ACC-1 (78, 249) and ACC-4 (247). ISEcp1 plays a dual role. It is involved in the transposition of adjacent genes (261) and has been shown able to mobilize a chromosomal bla gene onto a plasmid (166), and it also can supply an efficient promoter for the high-level expression of neighboring genes. The transcription of at least CMY-7 has been shown to start within the ISEcp1 element and takes place at a much higher level than the expression of the corresponding AmpC gene in C. freundii (135).

FIG. 4.

FIG. 4.

Genetic environment of representative AmpC genes: CMY-3 (GenBank accession number DQ164214), CMY-9 (accession number AB061794), CMY-13 (accession number AY339625), and DHA-1 (accession number SEN237702).

Other blaAmpC genes are found adjacent to an insertion sequence common region (ISCR1) involved in gene mobilization into (typically) complex class 1 integrons (322). Genes for several CMY varieties (CMY-1, -8, -9, -10, -11, and -19), DHA-1, and MOX-1 are so linked (322, 332). On the other hand, the gene for CMY-13 and its attendant ampR gene are bounded by directly repeated IS26 elements made up of a transposase gene (tnpA) with flanking inverted terminal repeat segments (214). Other elements are associated with and may have been involved in capturing the genes for FOX-5 (269), MIR-1 (142), and MOX-2 (271).

ONGOING EVOLUTION: EXTENDED-SPECTRUM CEPHALOSPORINASES

Just as amino acid alterations in TEM and SHV β-lactamase have given rise to extended-spectrum enzymes with broader substrate specificities, amino acid insertions, deletions, and substitutions have been described for AmpC β-lactamases that enhance catalytic efficiency toward oxyimino-β-lactam substrates (235). Such changes in both plasmid-determined and chromosomally mediated AmpC enzymes have been described. Their properties are shown in Table 7. The alterations occur either in the Ω-loop, making the enzyme more accessible for substrates with bulky R1 side chains, or at or near the R2 loop, widening the R2 binding site. At both locations, the amino acid alterations can have opposite effects on enzyme kinetics. Generally, the catalytic constant for ceftazidime increased along with the Km, or the Km decreased (reflecting greater affinity), but the kcat decreased as well. In either case, the kcat/Km ratio or catalytic efficiency for ceftazidime and related substrates increased compared to that of the wild-type enzyme with the result that the ceftazidime MICs for a strain carrying such enzymes were in the resistance range (MIC ≥ 32 μg/ml), while the MICs for cefotaxime and cefepime usually reflected only reduced susceptibility, such as a cefepime MIC of 8 μg/ml for E. coli with the AmpC enzymes from E. cloacae CHE or Enterobacter aerogenes Ear2. The enzyme from S. marcescens HD, however, when expressed in E. coli, conferred a cefepime MIC of 512 μg/ml (196), and those from E. coli strains EC14, EC18, and BER were associated with cefepime MICs of 16 μg/ml (197, 199). MICs for aztreonam and imipenem were usually little affected except that an aztreonam MIC of 128 μg/ml was produced by CMY-10 (172). Structural gene mutations were often accompanied by promoter mutations that increased the level of expression of the mutant gene (193). Modifications at additional enzyme sites in laboratory mutant have been described (14). Interestingly, the AmpC variant from E. coli HKY28 became more susceptible to inhibition by clavulanic acid, sulbactam, and tazobactam, a curious phenotype previously described for a few other AmpC variants (13, 341).

TABLE 7.

Properties of extended-spectrum cephalosporinases

Organism Alterationa Kinetic effectb
MIC effectc Reference(s)
Ceftazidime
Cefepime
Imipenem
kcat Km kcat Km kcat Km
E. cloacae GC1 3-aa insertion in Ω-loop ↑CAZ, ↑ATM 67, 237
S. marcescens SRT-1 E219K in Ω-loop ↑CAZ 206
S. marcescens ES46 E219K in Ω-loop ↑CAZ 348
S. marcescens SMSA S220Y in Ω-loop ↑CAZ 126
E. coli HKY28 3-aa deletion in H-9 helix ↑CAZ, ↑FEP 77
E. coli ECB33 1-aa insertion in H-9 helix ↑CAZ 193
E. coli EC16 S287C in R2 loop ↑CAZ 197
E. coli EC18 S287N in R2 loop ↑CAZ, ↑FEP, ↑ATM 197
E. aerogenes Ear2 L293P in R2 loop NC ↑CAZ, ↑FEP 17
E. coli EC15 H296P in R2 loop ↑CAZ 197
E. coli EC14 V298L in R2 loop ↑CAZ, ↑FEP 197
E. coli KL 14-aa substitutions NC NC ↑CAZ 194
E. coli BER 2-aa insertion in R2 loop ↑CAZ, ↑FEP 199, 299
E. cloacae CHE 6-aa deletion in R2 loop ↑CAZ, ↑FEP 18
S. marcescens HD 4-aa deletion in R2 loop NC NC ↑CAZ, ↑FEP 196
CMY-10 3-aa deletion in R2 loop ↑CAZ, ↑ATM 158, 172
CMY-19 I292S in R2 loop ↑CAZ 332
CMY-37 L316I in R2 loop ↑CAZ, ↑FEP 4
a

Positioned according to data in references 173 and 299. aa, amino acid.

b

NC, no change.

c

CAZ, ceftazidime; ATM, aztreonam; FEP, cefepime.

CLINICAL RELEVANCE

Chromosomal AmpC Enzymes

For enteric organisms with the potential for high-level AmpC β-lactamase production by mutation, the development of resistance upon therapy is a concern. In a landmark study of 129 patients with bacteremia due to Enterobacter spp., Chow et al. identified 6 out of 31 patients treated with broad-spectrum cephalosporins who developed decreased susceptibility (cephalosporin MIC posttherapy of >16 μg/ml) and augmented β-lactamase production after treatment with cefotaxime, ceftazidime, or ceftizoxime, a much higher frequency (19%) than that for the emergence of resistance to aminoglycosides or other β-lactams (58). A subsequent study of 477 patients with initially susceptible Enterobacter spp. also found that 19% of patients receiving broad-spectrum cephalosporins developed resistant Enterobacter isolates and that resistance was more likely to appear if the original isolate came from blood (156). A recent study evaluated 732 patients with infections due to Enterobacter spp., S. marcescens, C. freundii, or M. morganii (57). Resistance emerged in 11 of 218 patients (5%) treated with broad-spectrum cephalosporins, more often in Enterobacter spp. (10/121, or 8.3%) than in C. freundii (1/39 or 2.6%) and not at all in 37 infections with S. marcescens or 21 infections with M. morganii. A single patient died as a result. Biliary tract infection with malignant bile duct obstruction was identified as being a risk factor for resistance development. Combination therapy did not prevent resistance emergence. The clonal spread of AmpC-hyperproducing E. cloacae strains to other patients has been documented at some medical centers but seems not to be a widespread problem (253). Once selected, however, hyperproduction is stable so that 30 to 40% of E. cloacae isolates from inpatients in the United Kingdom (188) and 15 to 25% of North American isolates (147) currently have this mechanism of β-lactam resistance.

These studies did not address mortality, but in a study of 46 patients initially infected with cephalosporin-susceptible Enterobacter spp. that became resistant matched to 113 control patients with persistently susceptible isolates of the same organism, the patients were more likely to die as a result of the infection (26% versus 13%), had a longer hospital stay, and sustained higher attributable hospital charges (63).

Despite normally low-level expression of AmpC β-lactamase in E. coli, high-level producers have been identified in clinical specimens, typically as cefoxitin-resistant isolates with stronger AmpC promoters or mutations that destabilize the normal AmpC attenuator (32, 51, 52, 94, 241, 242, 297). For example, the screening of 29,323 clinical isolates of E. coli collected in 1999 to 2000 from 12 hospitals in Canada identified 232 strains that were resistant to cefoxitin, with 182 of them identified as being unique by pulsed-field gel electrophoresis (220). PCR and sequencing identified 51 different promoter or attenuator variants (323). In a few strains, the integration of an insertion element created a new and stronger ampC promoter (146, 220). Such strains are not only resistant to cefoxitin but also typically resistant to ampicillin, ticarcillin, cephalothin, and β-lactam combinations with clavulanic acid and have reduced susceptibility or are even resistant to expanded-spectrum cephalosporins. Some E. coli strains with up promoter mutations have alterations in blaAmpC as well, expanding its resistance spectrum (193). An accompanying loss of outer membrane porins can augment the resistance phenotype further (195). These strains usually remain susceptible to cefepime and imipenem (201) but may become ertapenem resistant. At least for the E. coli strains isolated in France that overproduce chromosomal AmpC β-lactamase, most belong to phylogenetic group A, a group which fortunately lacks a number of virulence factors (62). E. coli strains overexpressing AmpC β-lactamase have also been isolated from calves with diarrhea (40), so such strains can be veterinary as well as human pathogens.

Acinetobacter spp. have a variety of acquired β-lactamases, but the oxyimino-β-lactam resistance seen increasingly in this opportunistic pathogen is often attributable to its AmpC enzyme (42). The enzyme is normally expressed at low levels and is not inducible, but overexpression occurs with the upstream insertion of an insertion element (ISAba1) common in A. baumannii, which provides an efficient promoter for the blaAmpC gene (61, 122, 292). The overexpression of AmpC β-lactamase plays a role in the increasing resistance of P. aeruginosa as well, although acquired β-lactamases, pumps, and porins are also important (53, 186, 245). Because P. aeruginosa has at least three ampD genes (151, 290), enhanced AmpC production occurs in a stepwise fashion, producing resistance to antipseudomonas penicillins, oxyiminocephalosporins, and, with full derepression, cefepime (151, 186).

Plasmid-Mediated AmpC Enzymes

Plasmid-mediated AmpC β-lactamases have been found worldwide but are less common than extended-spectrum β-lactamases (ESBLs), and in E. coli, they appear to be less often a cause of cefoxitin resistance than an increased production of chromosomal AmpC β-lactamase (Table 8). The β-lactamase CMY-2 has the broadest geographic spread and is an important cause of β-lactam resistance in nontyphoid Salmonella strains in many countries (81, 213). In the United States between 1996 and 1998, 13 ceftriaxone-resistant but otherwise unrelated Salmonella strains were isolated from symptomatic patients in eight states and were found to produce CMY-2 β-lactamase (50, 80). Such strains have been isolated from cats, cattle, chickens, dogs, horses, pigs, and turkeys (112, 340), and in one case, they were spread from infected calves to the farmer's 12-year-old son (89). Another small outbreak was traced to contaminated pet dog treats containing dried beef (259). In a survey of U.S. isolates from 2000, 44 of 1,378 (3.2%) nontyphoid Salmonella strains were positive for CMY β-lactamase by PCR, as were 7 Shigella sonnei and 4 E. coli O157:H7 strains (339). When treatment is indicated, fluoroquinolones are as effective as they are with pansusceptible Salmonella strains (74), but a few strains that are resistant to both fluoroquinolones and extended-spectrum cephalosporins have appeared (338). CMY-2-producing nontyphoid Salmonella strains have been isolated in other countries, as have Salmonella strains producing AmpC β-lactamases CMY-4, CMY-7, ACC-1, and DHA-1 (19, 135, 213, 314). CMY producers belong to several serogroups, with Salmonella enterica serovars Typhimurium and Newport (113) being the most common. CMY-2 has also been responsible for ceftriaxone resistance in a Shigella sonnei outbreak (136).

TABLE 8.

Population studies of plasmid-mediated AmpC β-lactamases

Sample Collection period (yr) Location Frequency of plasmid-mediated AmpC AmpC type(s)a Reference
63 cefoxitin-resistant E. coli strains from 2,133 strains screened 1996 10 hospitals in Greece 55 strains (87% of cefoxitin resistant strains) or 2.6% of total LAT-3 (CMY-6), LAT-4 (LAT-1) 104
4,093 Salmonella isolates 1996-1998 17 U.S. state and community health departments 13 strains (0.32%) CMY-2 80
408 nosocomial isolates of K. pneumoniae resistant to cephalosporins or carbapenem 1996-2000 24 U.S. hospitals in 18 states 54 strains (13.2%) ACT-1, DHA-1, FOX-5, CMY-2 216
190 bloodstream isolates of K. pneumoniae 1995-1999 30 U.S. hospitals in 23 states 5 strains (2.6%) ACT-1, FOX-5 65
752 cephalosporin-resistant K. pneumoniae, K. oxytoca, and E. coli strains 1992-2000 70 sites in 25 U.S. states and the District of Columbia K. pneumoniae, 8.5%; K. oxytoca, 6.9%; E. coli, 4% ACT-1, FOX-5, CMY-2, DHA-1 6
232 cefoxitin-resistant E. coli strains from a total of 29,323 screened 1999-2000 12 Canadian hospitals 25 of cefoxitin resistant strains (10.8%) or 0.09% of total CMY-2 220
389 K. pneumoniae blood culture isolates 1998-2002 Seoul National University Hospital, Seoul, South Korea 65 isolates made ESBLs or AmpC enzymes; 28 of 61 strains characterized had AmpCs (7.2% of total) DHA-1, CMY-1-like 244
99 cefoxitin- and extended-spectrum cephalosporin-resistant K. pneumoniae isolates 1999-2002 Teaching hospital, Taiwan 77 had AmpC enzymes (in 35 strains combined with ESBLs) DHA-1, CMY-2, CMY-8 346
37 cefoxitin-resistant E. coli strains from 103 cephalosporin-resistant strains screened 1995-2003 Health Protection Agency, London, United Kingdom 25 cefoxitin-resistant strains (68%) or 24% of total CMY-2, CMY-7, CMY-21 132
116 cefoxitin-resistant E. coli and 122 cefoxitin-resistant K. pneumoniae strains 2003 16 hospitals in South Korea 33% of E. coli strains made CMY-2-like enzymes, and 76% of K. pneumoniae strains made DHA-1 DHA-1, CMY-2-like, CMY-10-like, CMY-18 170
CLSI screening test-positive E. coli isolates (291 isolates) and K. pneumoniae isolates (282 isolates) 2003 7 medical centers in Taiwan 44% of E. coli and 15% of K. pneumoniae isolates had AmpC-like enzymes CMY-2-like in E. coli; DHA-1 and CMY-2-like in K. pneumoniae 345
1,429 E. coli isolates collected as part of a surveillance program 2004 30 North American medical centers 65 isolates were screen test positive for ESBLs; 26 were screen test-negative AmpC producers 13 CMY-2, 3 FOX-5, 1 DHA-1 73
1,122 cephalosporin-resistant Enterobacteriaceae 2004 16 hospitals in London and Southeast England 502 CTX-M ESBL producers, 149 other ESBL producers, and 190 (16.9%) high-level AmpC β-lactamase producers Enterobacter spp. and E. coli mostly overproduced their chromosomal AmpC enzymes; the fewer plasmid-mediated AmpCs were of the Citrobacter type 263
746 screening test-positive gram-negative clinical isolates out of 6,421 evaluated 2000-2002 42 ICU and 21 non-ICU sites in the United States ESBLs found in 4.9% of Enterobacteriaceae, and transferable AmpCs found in 3.3% of K. pneumoniae isolates and in 61% of isolates along with ESBLs; AmpCs also found in 3.6% of K. oxytoca and 1.4% of P. mirabilis isolates FOX-5, DHA-like, ACT-1-like 217
359 cefoxitin-resistant E. coli strains from a total of 78,275 screened 2000-2003 Calgary Health Region, Canada 125 cefoxitin-resistant strains (35%) or 0.16% of total CMY-2 257
123 enterobacterial isolates from 112 inpatients 2001 University Hospital, Rio de Janeiro, Brazil 35 isolates made ESBLs; 5 E. coli isolates also overproduced AmpC; no strains had a plasmid-mediated AmpC None 70
327 cefoxitin-resistant isolates from 1,203 E. coli and 732 Klebsiella sp. isolates collected consecutively 2003-2005 Hospital, Shanghai, China 54 cefoxitin-resistant strains (17%) or 2.8% of total 41 DHA-1, 13 CMY-2 174
135 E. coli and 38 Klebsiella sp. isolates suspected of AmpC-mediated resistance 2004-2006 Health Protection Agency, London, United Kingdom E. coli, 49%; K. pneumoniae, 55% 60 CIT type including CMY-23, 14 ACC type, 11 FOX type, 3 DHA type 342
124 cefoxitin-resistant strains from 3,217 Enterobacteriaceae normally lacking inducible chromosomal ampC genes 2006-2007 University Hospital, Basel, Switzerland 5 of 103 cefoxitin-resistant E. coli isolates had plasmid-mediated AmpCs; cause of cefoxitin resistance in 3 K. oxytoca and 18 K. pneumoniae isolates not identified Not specified 2
2,388 isolates of Enterobacteriaceae from inpatients 2003-2004 13 hospitals in Poland Plasmid-mediated AmpCs identified only in 71 P. mirabilis isolates (20.5% of all P. mirabilis isolates); ESBLs in 11.1% of all isolates 24 of 71 sequenced; 19 CMY-15, 4 CMY-12, 1 CMY-38 isolates 82
75 E. coli and 14 Klebsiella isolates out of 1,647 strains testing nonsusceptible to cefoxitin or cefpodoxime 2005 30 nursing homes, various outpatient clinics, and Creighton University Medical Center, United States 9 E. coli isolates and 1 K. pneumoniae isolate All CMY-2 117
86 screening test-positive strains from 8,048 Enterobacteriaceae strains normally lacking or poorly expressing chromosomal ampC genes 1999-2007 Seattle Children's Hospital and Regional Medical Center, Seattle, Washington 36 had AmpC-type enzymes including 4 with class A β-lactamase as well; 47 had class A ESBLs alone, and 3 had carbapenemases 29 CMY-2-like and 6 DHA-types, and 1 uncharacterized 267
637 K. pneumoniae and 494 E. coli isolates 2005-2006 5 children's hospitals in China 207 were cefoxitin insusceptible, 128 were AmpC+ by test with 3-aminophenylboronic acid, and 74 were AmpC+ by multiplex PCR; occurrence rate of 10.1% in K. pneumoniae and 2.0% in E. coli 69 DHA-1, 4 CMY-2, 1 new CMY 75
a

Corrected enzyme designations after resequencing are shown in parentheses (15).

Most other strains with plasmid-mediated AmpC enzymes have been isolated from patients after several days of hospitalization, but recently, AmpC-producing isolates in cultures from long-term care facilities, rehabilitation centers, and outpatient clinics have been reported (117, 210). Risk factors for bloodstream infections caused by AmpC-producing strains of K. pneumoniae include long hospital stay, care in an intensive care unit (ICU), central venous catheterization, need for an indwelling urinary catheter, and prior administration of antibiotics, especially broad-spectrum cephalosporins and β-lactamase inhibitor combinations, and are thus similar to risk factors for infection by ESBL-producing K. pneumoniae strains (244, 347). Patients with leukemia (244, 303), cancer (134, 222, 244), and organ transplantation (222) have been affected. Outbreaks with MIR-1 (11 patients) (248), a BIL-1 (CMY-2)-like enzyme (5 patients) (222), CMY-16 (8 patients) (69), ACC-1 (13 patients [227] and 19 patients [240]), ACT-1 (17 patients) (41), and a LAT-type β-lactamase (6 patients) (103) have been reported. Sources of positive cultures included urine, blood, wounds, sputum, and stool. A CMY-2-producing E. coli isolate caused meningitis in a neonate (86). Often, the strain with a plasmid-mediated AmpC enzyme also produced other β-lactamases such as TEM-1 or an ESBL such as SHV-5, the presence of which may complicate detection of the AmpC phenotype.

AmpC DETECTION

There are presently no CLSI or other approved criteria for AmpC detection (76). Organisms producing enough AmpC β-lactamase will typically give a positive ESBL screening test but fail the confirmatory test involving increased sensitivity with clavulanic acid (29, 304). This phenotype is not, however, specific for an AmpC producer, since it can occur with certain complex TEM mutants (277), OXA-type ESBLs, and carbapenemases and in strains with high levels of TEM-1 β-lactamase. Except for non-lactose-fermenting gram-negative organisms intrinsically resistant to cephamycins, resistance to cefoxitin as well as oxyimino-β-lactams is suggestive of an AmpC enzyme, but it is not specific since cefoxitin resistance can also be produced by certain carbapenemases (262) and a few class A β-lactamases (331) and by decreased levels of production of outer membrane porins in both K. pneumoniae and E. coli (124, 125, 202, 203). Furthermore, some plasmid-mediated AmpC strains test susceptible to ceftriaxone, cefotaxime, and ceftazidime by current CLSI criteria and could easily be overlooked (315). Other confirmatory tests are needed (Table 9).

TABLE 9.

Laboratory tests for AmpC detection

Assay Reference(s)
Three dimensional 35, 66, 169, 200, 295, 319
Cefoxitin-agar 230
β-Lactam inhibitors
    Ro 48-1220 16, 37, 66
    LN-2-128 37
    Syn 2190 36, 65
    Cloxacillin 38, 83, 280
Non-β-lactam inhibitors
    Boronic acid 300, 301
    Phenylboronic acid 64, 315
    Benzo(b)thiophene-2-boronic acid 44, 176
    3-Aminophenylboronic acid 143, 344
PCR 251, 351

The three-dimensional test was designed to detect both AmpC and ESBL production. In the “indirect” form used for AmpC detection, a conventional disk diffusion susceptibility assay is carried out with a susceptible strain, such as E. coli ATCC 25922, as the lawn and a suspension of the test organism, which is added to a circular slit in the agar 3 mm from a disk containing cefoxitin or some other agent. Distortion of the zone of inhibition indicates a positive test, as cefoxitin is hydrolyzed by the presence of an AmpC enzyme (319). In subsequent modifications, a radial slit was employed, and rather than using intact cells, the test organisms were concentrated by centrifugation, and the pellet was freeze-thawed five to seven times to release β-lactamase (66, 200). Direct spot inoculation of the test organism 7 to 8 mm from the cefoxitin disk has also been used successfully (295), as has a heavy inoculum streaked radially from the cefoxitin disk on the agar surface without using a slit (169), although the latter procedure missed some CMY-2- and DHA-1-producing strains. In a further modification, the test organism has been applied to a filter paper disk containing Tris-EDTA to enhance membrane permeability, with the disk then placed onto a lawn of E. coli ATCC 25922 adjacent to a cefoxitin disk (35). In every case, the presence of an AmpC β-lactamase is indicated by a distortion of the inhibition zone around the cefoxitin disk. Organisms producing a carbapenemase can mimic an AmpC β-lactamase in cefoxitin inactivation, so reduced carbapenem susceptibility is important to exclude since otherwise, a carbapenem might be selected for therapy (35).

A variation on the three-dimensional test is to plate the sensitive indicator strain on agar containing 4 μg/ml cefoxitin and add the freeze-thawed cell extract to a well in the plate. After incubation, growth around the well indicates the presence of a cefoxitin-hydrolyzing enzyme (230). This method is reported to be just as sensitive and specific as the three-dimensional test for AmpC detection, is easier to perform, and allows multiple samples per plate to be tested.

Another approach for AmpC detection is the use of an inhibitor for this β-lactamase class analogous to the use of clavulanic acid in a confirmatory test for class A ESBLs. The β-lactams LN-2-128, Ro 48-1220, and Syn 2190 have been evaluated for this purpose, with the best results from the combination of Syn 2190 and cefotetan, which was 100% specific and 91% sensitive in AmpC β-lactamase detection (36, 37). Unfortunately, these inhibitors are not commercially available.

A double-disk test with a 500-μg cloxacillin disk placed between disks containing ceftazidime and cefotaxime on a lawn of the test organism has been explored using 15 AmpC-producing strains. All showed synergy. A central cefoxitin disk produced synergy with ceftazidime and cefotaxime only with ACC-1 β-lactamase and also revealed the inducibility of enzymes such as DHA-1 (280).

Etest strips with a gradient of cefotetan or cefoxitin on one half and the same combined with a constant concentration of cloxacillin on the other half have been evaluated for AmpC detection (38). Either a reduction in cephamycin MIC of at least three dilutions, deformation of the ellipse of inhibition, or a “phantom zone” was interpreted as a positive test. With almost 500 test strains, the overall sensitivity and specificity were 88 to 93% (83).

Boronic acids have long been known as AmpC inhibitors (28). Various boronic acid derivatives have been either added to a blank disk placed near a β-lactam disk or added to the β-lactam disk for comparison with an unmodified β-lactam disk. For example, Yagi et al. found that a disk potentiation test utilizing a ≥5-mm enhancement of the zone of inhibition around a ceftazidime or cefotaxime disk when 300 μg 3-aminophenylboronic acid was added reliably detected all AmpC varieties tested but was negative with strains producing ESBLs and carbapenemases (344), findings that have been confirmed with a different set of strains (143). Strains producing both a plasmid-mediated AmpC β-lactamase and an ESBL have been reliably detected (301), but such a test cannot differentiate between an AmpC enzyme encoded on a plasmid or on the chromosome. Specificity is also a concern since boronic acids also enhance the sensitivity of strains making a non-AmpC enzyme, class A KPC β-lactamase (250, 324).

Phenotypic tests cannot distinguish among the various families of plasmid-mediated AmpC enzymes and may also overlook chromosomally determined AmpC β-lactamases with an extended spectrum (193). For these purposes, and as the current “gold standard” for plasmid-mediated AmpC β-lactamase detection, multiplex PCR has been developed by utilizing six primer pairs (251) to which a seventh pair for CFE-1 β-lactamase (229) could be added. Chromosomal blaAmpC did not interfere in testing strains of K. pneumoniae, E. coli, P. mirabilis, or S. enterica but could be a problem with blaAmpC genes in one of the genera from which the plasmid-mediated enzymes are derived. (Table 5). A multiplex asymmetric PCR-based microarray method for detecting genes for both plasmid-mediated AmpC β-lactamases and mutations responsible for the ESBL phenotype in blaSHV has been described (351). Perfection of a PCR array technology may ultimately allow the automation of AmpC β-lactamase detection for a suitably equipped clinical laboratory.

Is the recognition of plasmid-mediated AmpC enzymes necessary for the average laboratory? Therapeutic and infection control considerations argue that it is. AmpC-producing isolates may appear to be susceptible in vitro to some cephalosporins and aztreonam yet fail to respond if those agents are used so that a specific test for their presence is necessary (318). Compared to ESBL producers, isolates producing AmpC β-lactamase are resistant to additional β-lactams and insusceptible to currently available β-lactamase inhibitors and have the potential for developing resistance to carbapenems. Furthermore, plasmid mediation of AmpC carries the threat of spread to other organisms within a hospital or geographic region. Time will tell whether these considerations will still apply if cephalosporin breakpoints are significantly lowered so that decisions about therapy become based only on low-MIC susceptibility.

TREATMENT OF AmpC-PRODUCING ORGANISMS

Strains with ampC genes are often resistant to multiple agents, making the selection of an effective antibiotic difficult. β-Lactam/β-lactamase inhibitor combinations and most cephalosporins and penicillins should be avoided because of in vitro resistance, the potential for AmpC induction or selection of high-enzyme-level mutants, and documented poor clinical outcomes with ceftazidime, cefotaxime (244), and, in an animal model, piperacillin-tazobactam (329). Whether cefepime can be used is unsettled. Cefepime is a poor inducer of AmpC β-lactamase, rapidly penetrates through the outer cell membrane, and is little hydrolyzed by the enzyme (232, 283), so many AmpC-producing organisms test cefepime susceptible with a conventional inoculum (see Table 6 for examples). If a 100-fold-higher inoculum is used, however, cefepime MICs increase dramatically for some AmpC producers, suggesting caution in its use (154, 256), and some strains are frankly resistant (238). In a pneumonia model using guinea pigs, cefepime, imipenem, and meropenem were equally effective against a porin-deficient K. pneumoniae strain producing FOX-5 β-lactamase (255). Also, in a rat pneumonia model with a K. pneumoniae strain producing ACT-1, β-lactam therapy with imipenem, meropenem, ertapenem, or cefepime gave equivalent results, even if the test strain was porin deficient (243). However, in a mouse pneumonia model with a porin-deficient strain of K. pneumoniae producing CMY-2 β-lactamase, survival with cefepime therapy was no better than that without antibiotic and significantly inferior to that with imipenem treatment (256). Nonetheless, cefepime has cured infections due to multiply resistant Enterobacter spp. including those with reduced susceptibility to ceftazidime (286), and in a prospective, randomized study of ICU patients with nosocomial pneumonia having P. aeruginosa as the most common isolate, cefepime proved to be just as effective as imipenem (350). The jury is still out, but cefepime seems to be an exception to the recommendation to avoid all cephalosporin therapy even if an AmpC-producing isolate tests susceptible to an individual agent.

Temocillin, a 6-α-methoxy derivative of ticarcillin, is active in vitro against many AmpC-producing Enterobacteriaceae whether the enzyme is determined by chromosomal or plasmid genes and is also active against ESBL producers (108, 187), but clinical experience is limited, and it is available in only a few countries. Amdinocillin is also effective in vitro against AmpC-producing E. coli strains but shows a marked inoculum effect unless clavulanic acid is present (43) and is also not available in the United States.

Carbapenem therapy has usually been successful (244) but has also been followed by the emergence of carbapenem-resistant K. pneumoniae associated with ACT-1 β-lactamase production and outer membrane porin loss (3, 41, 152). Reduced imipenem susceptibility (MIC 8 to 32 μg/ml) has also been reported in porin-deficient clinical isolates of K. pneumoniae making AmpC enzymes ACC-1 (34), CMY-2 (171), CMY-4 (49), DHA-1 (171), or an uncharacterized AmpC-type enzyme (246). The same scenario has been described for clinical isolates of E. aerogenes (59, 71, 317, 325, 349), E. cloacae (168), and C. freundii (192) as well as laboratory mutants (131, 270, 327). In E. coli, reduced carbapenem susceptibility or frank resistance (imipenem MIC of 8 to 128 μg/ml) in porin-deficient clinical isolates producing CMY-2 (183) or CMY-4 (303) has been described, while a Salmonella enterica strain lacking a porin and making CMY-4 reached an imipenem MIC of 32 μg/ml (8).

If the isolate is susceptible, fluoroquinolone therapy is an option especially for non-life-threatening infections such as urinary tract infection. Tigecycline is another option. It had good activity in vitro against 88% of AmpC-hyperproducing isolates of E. coli, Enterobacter spp., Klebsiella spp., and Citrobacter spp. from the United Kingdom (130), but few P. aeruginosa isolates (282) and, in some centers, only 22% of nosocomial Acinetobacter isolates (231) were tigecycline susceptible.

CONCLUDING REMARKS

AmpC β-lactamases are clinically important cephalosporinases encoded on the chromosome of many Enterobacteriaceae and a few other organisms where they mediate resistance to cephalothin, cefazolin, cefoxitin, most penicillins, and β-lactamase inhibitor/β-lactam combinations. In many bacteria, AmpC enzymes are inducible and can be expressed at high levels by mutation. Overexpression confers resistance to broad-spectrum cephalosporins including cefotaxime, ceftazidime, and ceftriaxone and is a problem especially in infections due to E. aerogenes and E. cloacae, where an isolate initially susceptible to these agents may become resistant upon therapy. Transmissible plasmids have acquired genes for AmpC enzymes, which consequently can now appear in bacteria lacking or poorly expressing a chromosomal blaAmpC gene, such as E. coli, K. pneumoniae, and P. mirabilis. Resistance due to plasmid-mediated AmpC enzymes is less common than ESBL production in most parts of the world but may be both harder to detect and broader in spectrum. AmpC enzymes encoded by both chromosomal and plasmid genes are also evolving to hydrolyze broad-spectrum cephalosporins more efficiently. Techniques to identify AmpC β-lactamase-producing isolates are available but are still evolving and are not yet optimized for the clinical laboratory, which probably now underestimates this resistance mechanism. Carbapenems can usually be used to treat infections due to AmpC-producing bacteria, but carbapenem resistance can arise in some organisms by mutations that reduce influx (outer membrane porin loss) or enhance efflux (efflux pump activation).

REFERENCES

  • 1.Abraham, E. P., and E. Chain. 1940. An enzyme from bacteria able to destroy penicillin. Nature 146:837. [PubMed] [Google Scholar]
  • 2.Adler, H., L. Fenner, P. Walter, D. Hohler, E. Schultheiss, S. Oezcan, and R. Frei. 2008. Plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes: prevalence at a Swiss university hospital and occurrence of the different molecular types in Switzerland. J. Antimicrob. Chemother. 61:457-458. [DOI] [PubMed] [Google Scholar]
  • 3.Ahmad, M., C. Urban, N. Mariano, P. A. Bradford, E. Calcagni, S. J. Projan, K. Bush, and J. J. Rahal. 1999. Clinical characteristics and molecular epidemiology associated with imipenem-resistant Klebsiella pneumoniae. Clin. Infect. Dis. 29:352-355. [DOI] [PubMed] [Google Scholar]
  • 4.Ahmed, A. M., and T. Shimamoto. 2008. Emergence of a cefepime- and cefpirome-resistant Citrobacter freundii clinical isolate harbouring a novel chromosomally encoded AmpC β-lactamase, CMY-37. Int. J. Antimicrob. Agents 32:256-261. [DOI] [PubMed] [Google Scholar]
  • 5.Alksne, L. E., and B. A. Rasmussen. 1997. Expression of the AsbA1, OXA-12, and AsbM1 β-lactamases in Aeromonas jandaei AER 14 is coordinated by a two-component regulon. J. Bacteriol. 179:2006-2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Alvarez, M., J. H. Tran, N. Chow, and G. A. Jacoby. 2004. Epidemiology of conjugative plasmid-mediated AmpC β-lactamases in the United States. Antimicrob. Agents Chemother. 48:533-537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Ambler, R. P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B 289:321-331. [DOI] [PubMed] [Google Scholar]
  • 8.Armand-Lefèvre, L., V. Leflon-Guibout, J. Bredin, F. Barguellil, A. Amor, J. M. Pagès, and M. H. Nicolas-Chanoine. 2003. Imipenem resistance in Salmonella enterica serovar Wien related to porin loss and CMY-4 β-lactamase production. Antimicrob. Agents Chemother. 47:1165-1168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Avison, M. B., P. M. Bennett, and T. R. Walsh. 2000. β-Lactamase expression in Plesiomonas shigelloides. J. Antimicrob. Chemother. 45:877-880. [DOI] [PubMed] [Google Scholar]
  • 10.Avison, M. B., P. Niumsup, K. Nurmahomed, T. R. Walsh, and P. M. Bennett. 2004. Role of the ‘cre/blr-tag’ DNA sequence in regulation of gene expression by the Aeromonas hydrophila β-lactamase regulator, BlrA. J. Antimicrob. Chemother. 53:197-202. [DOI] [PubMed] [Google Scholar]
  • 11.Avison, M. B., P. Niumsup, T. R. Walsh, and P. M. Bennett. 2000. Aeromonas hydrophila AmpH and CepH β-lactamases: derepressed expression in mutants of Escherichia coli lacking creB. J. Antimicrob. Chemother. 46:695-702. [DOI] [PubMed] [Google Scholar]
  • 12.Avison, M. B., S. Underwood, A. Okazaki, T. R. Walsh, and P. M. Bennett. 2004. Analysis of AmpC β-lactamase expression and sequence in biochemically atypical ceftazidime-resistant Enterobacteriaceae from paediatric patients. J. Antimicrob. Chemother. 53:584-591. [DOI] [PubMed] [Google Scholar]
  • 13.Babini, G. S., F. Danel, S. D. Munro, P. A. Micklesen, and D. M. Livermore. 1998. Unusual tazobactam-sensitive AmpC β-lactamase from two Escherichia coli isolates. J. Antimicrob. Chemother. 41:115-118. [DOI] [PubMed] [Google Scholar]
  • 14.Barlow, M., and B. G. Hall. 2003. Experimental prediction of the evolution of cefepime resistance from the CMY-2 AmpC β-lactamase. Genetics 164:23-29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Barlow, M., and B. G. Hall. 2002. Origin and evolution of the AmpC β-lactamases of Citrobacter freundii. Antimicrob. Agents Chemother. 46:1190-1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Barnaud, G., G. Arlet, C. Verdet, O. Gaillot, P. H. Lagrange, and A. Philippon. 1998. Salmonella enteritidis: AmpC plasmid-mediated inducible β-lactamase (DHA-1) with an ampR gene from Morganella morganii. Antimicrob. Agents Chemother. 42:2352-2358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Barnaud, G., Y. Benzerara, J. Gravisse, L. Raskine, M. J. Sanson-Le Pors, R. Labia, and G. Arlet. 2004. Selection during cefepime treatment of a new cephalosporinase variant with extended-spectrum resistance to cefepime in an Enterobacter aerogenes clinical isolate. Antimicrob. Agents Chemother. 48:1040-1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Barnaud, G., R. Labia, L. Raskine, M. J. Sanson-Le Pors, A. Philippon, and G. Arlet. 2001. Extension of resistance to cefepime and cefpirome associated to a six amino acid deletion in the H-10 helix of the cephalosporinase of an Enterobacter cloacae clinical isolate. FEMS Microbiol. Lett. 195:185-190. [DOI] [PubMed] [Google Scholar]
  • 19.Batchelor, M., K. L. Hopkins, E. J. Threlfall, F. A. Clifton-Hadley, A. D. Stallwood, R. H. Davies, and E. Liebana. 2005. Characterization of AmpC-mediated resistance in clinical Salmonella isolates recovered from humans during the period 1992 to 2003 in England and Wales. J. Clin. Microbiol. 43:2261-2265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Bauernfeind, A., Y. Chong, and S. Schweighart. 1989. Extended broad spectrum β-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 17:316-321. [DOI] [PubMed] [Google Scholar]
  • 21.Bauernfeind, A., I. Schneider, R. Jungwirth, H. Sahly, and U. Ullmann. 1999. A novel type of AmpC β-lactamase, ACC-1, produced by a Klebsiella pneumoniae strain causing nosocomial pneumonia. Antimicrob. Agents Chemother. 43:1924-1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Bauernfeind, A., I. Stemplinger, R. Jungwirth, and H. Giamarellou. 1996. Characterization of the plasmidic β-lactamase CMY-2, which is responsible for cephamycin resistance. Antimicrob. Agents Chemother. 40:221-224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Bauernfeind, A., I. Stemplinger, R. Jungwirth, R. Wilhelm, and Y. Chong. 1996. Comparative characterization of the cephamycinase blaCMY-1 gene and its relationship with other β-lactamase genes. Antimicrob. Agents Chemother. 40:1926-1930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Baumann, M., H. Simon, K. H. Schneider, H. J. Danneel, U. Küster, and F. Giffhorn. 1989. Susceptibility of Rhodobacter sphaeroides to β-lactam antibiotics: isolation and characterization of a periplasmic β-lactamase (cephalosporinase). J. Bacteriol. 171:308-313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Bauvois, C., A. S. Ibuka, A. Celso, J. Alba, Y. Ishii, J. M. Frère, and M. Galleni. 2005. Kinetic properties of four plasmid-mediated AmpC β-lactamases. Antimicrob. Agents Chemother. 49:4240-4246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Beceiro, A., F. J. Pérez-Llarena, A. Pérez, M. Tomás, A. Fernández, S. Mallo, R. Villanueva, and G. Bou. 2007. Molecular characterization of the gene encoding a new AmpC β-lactamase in Acinetobacter baylyi. J. Antimicrob. Chemother. 59:996-1000. [DOI] [PubMed] [Google Scholar]
  • 27.Beckstrom-Sternberg, S. M., R. K. Auerbach, S. Godbole, J. V. Pearson, J. S. Beckstrom-Sternberg, Z. Deng, C. Munk, K. Kubota, Y. Zhou, D. Bruce, J. Noronha, R. H. Scheuermann, A. Wang, X. Wei, J. Wang, J. Hao, D. M. Wagner, T. S. Brettin, N. Brown, P. Gilna, and P. S. Keim. 2007. Complete genomic characterization of a pathogenic A.II strain of Francisella tularensis subspecies tularensis. PLoS ONE 2:e947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Beesley, T., N. Gascoyne, V. Knott-Hunziker, S. Petursson, S. G. Waley, B. Jaurin, and T. Grundstrom. 1983. The inhibition of class C β-lactamases by boronic acids. Biochem. J. 209:229-233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Bell, J. M., M. Chitsaz, J. D. Turnidge, M. Barton, L. J. Walters, and R. N. Jones. 2007. Prevalence and significance of a negative extended-spectrum β-lactamase (ESBL) confirmation test result after a positive ESBL screening test result for isolates of Escherichia coli and Klebsiella pneumoniae: results from the SENTRY Asia-Pacific surveillance program. J. Clin. Microbiol. 45:1478-1482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Bellais, S., L. Poirel, N. Fortineau, J. W. Decousser, and P. Nordmann. 2001. Biochemical-genetic characterization of the chromosomally encoded extended-spectrum class A β-lactamase from Rahnella aquatilis. Antimicrob. Agents Chemother. 45:2965-2968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Bergström, S., F. P. Lindberg, O. Olsson, and S. Normark. 1983. Comparison of the overlapping frd and ampC operons of Escherichia coli with the corresponding DNA sequences in other gram-negative bacteria. J. Bacteriol. 155:1297-1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Bergstrom, S., and S. Normark. 1979. β-Lactam resistance in clinical isolates of Escherichia coli caused by elevated production of the ampC-mediated chromosomal β-lactamase. Antimicrob. Agents Chemother. 16:427-433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Bergström, S., O. Olsson, and S. Normark. 1982. Common evolutionary origin of chromosomal beta-lactamase genes in enterobacteria. J. Bacteriol. 150:528-534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Bidet, P., B. Burghoffer, V. Gautier, N. Brahimi, P. Mariani-Kurkdjian, A. El-Ghoneimi, E. Bingen, and G. Arlet. 2005. In vivo transfer of plasmid-encoded ACC-1 AmpC from Klebsiella pneumoniae to Escherichia coli in an infant and selection of impermeability to imipenem in K. pneumoniae. Antimicrob. Agents Chemother. 49:3562-3565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Black, J. A., E. S. Moland, and K. S. Thomson. 2005. AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. J. Clin. Microbiol. 43:3110-3113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Black, J. A., K. S. Thomson, J. D. Buynak, and J. D. Pitout. 2005. Evaluation of β-lactamase inhibitors in disk tests for detection of plasmid-mediated AmpC β-lactamases in well-characterized clinical strains of Klebsiella spp. J. Clin. Microbiol. 43:4168-4171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Black, J. A., K. S. Thomson, and J. D. Pitout. 2004. Use of β-lactamase inhibitors in disk tests to detect plasmid-mediated AmpC β-lactamases. J. Clin. Microbiol. 42:2203-2206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Bolmström, A., A. Engelhardt, L. Bylund, P. Ho, and Å. Karlsson. 2006. Evaluation of two new Etest strips for AmpC detection, abstr. D-0451. Abstr. 46th Intersci. Conf. Antimicrob. Agents Chemother.
  • 39.Bou, G., and J. Martinez-Beltran. 2000. Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC β-lactamase in Acinetobacter baumannii. Antimicrob. Agents Chemother. 44:428-432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Bradford, P. A., P. J. Petersen, I. M. Fingerman, and D. G. White. 1999. Characterization of expanded-spectrum cephalosporin resistance in E. coli isolates associated with bovine calf diarrhoeal disease. J. Antimicrob. Chemother. 44:607-610. [DOI] [PubMed] [Google Scholar]
  • 41.Bradford, P. A., C. Urban, N. Mariano, S. J. Projan, J. J. Rahal, and K. Bush. 1997. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the loss of an outer membrane protein. Antimicrob. Agents Chemother. 41:563-569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Bratu, S., D. Landman, D. A. Martin, C. Georgescu, and J. Quale. 2008. Correlation of antimicrobial resistance with β-lactamases, the OmpA-like porin, and efflux pumps in clinical isolates of Acinetobacter baumannii endemic to New York City. Antimicrob. Agents Chemother. 52:2999-3005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Brenwald, N. P., J. Andrews, and A. P. Fraise. 2006. Activity of mecillinam against AmpC β-lactamase-producing Escherichia coli. J. Antimicrob. Chemother. 58:223-224. [DOI] [PubMed] [Google Scholar]
  • 44.Brenwald, N. P., G. Jevons, J. Andrews, L. Ang, and A. P. Fraise. 2005. Disc methods for detecting AmpC β-lactamase-producing clinical isolates of Escherichia coli and Klebsiella pneumoniae. J. Antimicrob. Chemother. 56:600-601. [DOI] [PubMed] [Google Scholar]
  • 45.Bulychev, A., and S. Mobashery. 1999. Class C β-lactamases operate at the diffusion limit for turnover of their preferred cephalosporin substrates. Antimicrob. Agents Chemother. 43:1743-1746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Burman, L. G., J. T. Park, E. B. Lindström, and H. G. Boman. 1973. Resistance of Escherichia coli to penicillins: identification of the structural gene for the chromosomal penicillinase. J. Bacteriol. 116:123-130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Bush, K., G. A. Jacoby, and A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39:1211-1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Bush, K., C. Macalintal, B. A. Rasmussen, V. J. Lee, and Y. Yang. 1993. Kinetic interactions of tazobactam with β-lactamases from all major structural classes. Antimicrob. Agents Chemother. 37:851-858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Cao, V. T., G. Arlet, B. M. Ericsson, A. Tammelin, P. Courvalin, and T. Lambert. 2000. Emergence of imipenem resistance in Klebsiella pneumoniae owing to combination of plasmid-mediated CMY-4 and permeability alteration. J. Antimicrob. Chemother. 46:895-900. [DOI] [PubMed] [Google Scholar]
  • 50.Carattoli, A., F. Tosini, W. P. Giles, M. E. Rupp, S. H. Hinrichs, F. J. Angulo, T. J. Barrett, and P. D. Fey. 2002. Characterization of plasmids carrying CMY-2 from expanded-spectrum cephalosporin-resistant Salmonella strains isolated in the United States between 1996 and 1998. Antimicrob. Agents Chemother. 46:1269-1272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Caroff, N., E. Espaze, I. Berard, H. Richet, and A. Reynaud. 1999. Mutations in the ampC promoter of Escherichia coli isolates resistant to oxyiminocephalosporins without extended spectrum β-lactamase production. FEMS Microbiol. Lett. 173:459-465. [DOI] [PubMed] [Google Scholar]
  • 52.Caroff, N., E. Espaze, D. Gautreau, H. Richet, and A. Reynaud. 2000. Analysis of the effects of −42 and −32 ampC promoter mutations in clinical isolates of Escherichia coli hyperproducing ampC. J. Antimicrob. Chemother. 45:783-788. [DOI] [PubMed] [Google Scholar]
  • 53.Cavallo, J. D., R. Fabre, F. Leblanc, M. H. Nicolas-Chanoine, and A. Thabaut. 2000. Antibiotic susceptibility and mechanisms of β-lactam resistance in 1310 strains of Pseudomonas aeruginosa: a French multicentre study (1996). J. Antimicrob. Chemother. 46:133-136. [DOI] [PubMed] [Google Scholar]
  • 54.Chen, Y., G. Minasov, T. A. Roth, F. Prati, and B. K. Shoichet. 2006. The deacylation mechanism of AmpC β-lactamase at ultrahigh resolution. J. Am. Chem. Soc. 128:2970-2976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Chen, Y. T., T. L. Lauderdale, T. L. Liao, Y. R. Shiau, H. Y. Shu, K. M. Wu, J. J. Yan, I. J. Su, and S. F. Tsai. 2007. Sequencing and comparative genomic analysis of pK29, a 269-kilobase conjugative plasmid encoding CMY-8 and CTX-M-3 β-lactamases in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 51:3004-3007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Chien, M., I. Morozova, S. Shi, H. Sheng, J. Chen, S. M. Gomez, G. Asamani, K. Hill, J. Nuara, M. Feder, J. Rineer, J. J. Greenberg, V. Steshenko, S. H. Park, B. Zhao, E. Teplitskaya, J. R. Edwards, S. Pampou, A. Georghiou, I. C. Chou, W. Iannuccilli, M. E. Ulz, D. H. Kim, A. Geringer-Sameth, C. Goldsberry, P. Morozov, S. G. Fischer, G. Segal, X. Qu, A. Rzhetsky, P. Zhang, E. Cayanis, P. J. De Jong, J. Ju, S. Kalachikov, H. A. Shuman, and J. J. Russo. 2004. The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305:1966-1968. [DOI] [PubMed] [Google Scholar]
  • 57.Choi, S. H., J. E. Lee, S. J. Park, S. O. Lee, J. Y. Jeong, M. N. Kim, J. H. Woo, and Y. S. Kim. 2008. Emergence of antibiotic resistance during therapy for infections caused by Enterobacteriaceae producing AmpC β-lactamase: implications for antibiotic use. Antimicrob. Agents Chemother. 52:995-1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Chow, J. W., M. J. Fine, D. M. Shlaes, J. P. Quinn, D. C. Hooper, M. P. Johnson, R. Ramphal, M. M. Wagener, D. K. Miyashiro, and V. L. Yu. 1991. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann. Intern. Med. 115:585-590. [DOI] [PubMed] [Google Scholar]
  • 59.Chow, J. W., and D. M. Shlaes. 1991. Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes. J. Antimicrob. Chemother. 28:499-504. [DOI] [PubMed] [Google Scholar]
  • 60.Cole, S. T. 1987. Nucleotide sequence and comparative analysis of the frd operon encoding the fumarate reductase of Proteus vulgaris. Extensive sequence divergence of the membrane anchors and absence of an frd-linked ampC cephalosporinase gene. Eur. J. Biochem. 167:481-488. [DOI] [PubMed] [Google Scholar]
  • 61.Corvec, S., N. Caroff, E. Espaze, C. Giraudeau, H. Drugeon, and A. Reynaud. 2003. AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. J. Antimicrob. Chemother. 52:629-635. [DOI] [PubMed] [Google Scholar]
  • 62.Corvec, S., A. Prodhomme, C. Giraudeau, S. Dauvergne, A. Reynaud, and N. Caroff. 2007. Most Escherichia coli strains overproducing chromosomal AmpC β-lactamase belong to phylogenetic group A. J. Antimicrob. Chemother. 60:872-876. [DOI] [PubMed] [Google Scholar]
  • 63.Cosgrove, S. E., K. S. Kaye, G. M. Eliopoulous, and Y. Carmeli. 2002. Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. Arch. Intern. Med. 162:185-190. [DOI] [PubMed] [Google Scholar]
  • 64.Coudron, P. E. 2005. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J. Clin. Microbiol. 43:4163-4167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Coudron, P. E., N. D. Hanson, and M. W. Climo. 2003. Occurrence of extended-spectrum and AmpC beta-lactamases in bloodstream isolates of Klebsiella pneumoniae: isolates harbor plasmid-mediated FOX-5 and ACT-1 AmpC beta-lactamases. J. Clin. Microbiol. 41:772-777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Coudron, P. E., E. S. Moland, and K. S. Thomson. 2000. Occurrence and detection of AmpC beta-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. J. Clin. Microbiol. 38:1791-1796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Crichlow, G. V., A. P. Kuzin, M. Nukaga, K. Mayama, T. Sawai, and J. R. Knox. 1999. Structure of the extended-spectrum class C β-lactamase of Enterobacter cloacae GC1, a natural mutant with a tandem tripeptide insertion. Biochemistry 38:10256-10261. [DOI] [PubMed] [Google Scholar]
  • 68.Curtis, N. A. C., R. L. Eisenstadt, C. Rudd, and A. J. White. 1986. Inducible type I β-lactamases of gram-negative bacteria and resistance to β-lactam antibiotics. J. Antimicrob. Chemother. 17:51-61. [DOI] [PubMed] [Google Scholar]
  • 69.D'Andrea, M. M., E. Nucleo, F. Luzzaro, T. Giani, R. Migliavacca, F. Vailati, V. Kroumova, L. Pagani, and G. M. Rossolini. 2006. CMY-16, a novel acquired AmpC-type β-lactamase of the CMY/LAT lineage in multifocal monophyletic isolates of Proteus mirabilis from northern Italy. Antimicrob. Agents Chemother. 50:618-624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.da Silva Dias, R. C., A. A. Borges-Neto, G. I. D'Almeida Ferraiuoli, M. P. de-Oliveira, L. W. Riley, and B. M. Moreira. 2008. Prevalence of AmpC and other β-lactamases in enterobacteria at a large urban university hospital in Brazil. Diagn. Microbiol. Infect. Dis. 60:79-87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.de Champs, C., C. Henquell, D. Guelon, D. Sirot, N. Gazuy, and J. Sirot. 1993. Clinical and bacteriological study of nosocomial infections due to Enterobacter aerogenes resistant to imipenem. J. Clin. Microbiol. 31:123-127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Decousser, J. W., L. Poirel, and P. Nordmann. 2001. Characterization of a chromosomally encoded extended-spectrum class A β-lactamase from Kluyvera cryocrescens. Antimicrob. Agents Chemother. 45:3595-3598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Deshpande, L. M., R. N. Jones, T. R. Fritsche, and H. S. Sader. 2006. Occurrence of plasmidic AmpC type β-lactamase-mediated resistance in Escherichia coli: report from the SENTRY Antimicrobial Surveillance Program (North America, 2004). Int. J. Antimicrob. Agents 28:578-581. [DOI] [PubMed] [Google Scholar]
  • 74.Devasia, R. A., J. K. Varma, J. Whichard, S. Gettner, A. B. Cronquist, S. Hurd, S. Segler, K. Smith, D. Hoefer, B. Shiferaw, F. J. Angulo, and T. F. Jones. 2005. Antimicrobial use and outcomes in patients with multidrug-resistant and pansusceptible Salmonella Newport infections, 2002-2003. Microb. Drug Resist. 11:371-377. [DOI] [PubMed] [Google Scholar]
  • 75.Ding, H., Y. Yang, Q. Lu, Y. Wang, Y. Chen, L. Deng, A. Wang, Q. Deng, H. Zhang, C. Wang, L. Liu, X. Xu, L. Wang, and X. Shen. 2008. The prevalence of plasmid-mediated AmpC β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from five children's hospitals in China. Eur. J. Clin. Microbiol. Infect. Dis. 27:915-921. [DOI] [PubMed] [Google Scholar]
  • 76.Doi, Y., and D. L. Paterson. 2007. Detection of plasmid-mediated class C β-lactamases. Int. J. Infect. Dis. 11:191-197. [DOI] [PubMed] [Google Scholar]
  • 77.Doi, Y., J. Wachino, M. Ishiguro, H. Kurokawa, K. Yamane, N. Shibata, K. Shibayama, K. Yokoyama, H. Kato, T. Yagi, and Y. Arakawa. 2004. Inhibitor-sensitive AmpC β-lactamase variant produced by an Escherichia coli clinical isolate resistant to oxyiminocephalosporins and cephamycins. Antimicrob. Agents Chemother. 48:2652-2658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Doloy, A., C. Verdet, V. Gautier, D. Decre, E. Ronco, A. Hammami, A. Philippon, and G. Arlet. 2006. Genetic environment of acquired blaACC-1 β-lactamase gene in Enterobacteriaceae isolates. Antimicrob. Agents Chemother. 50:4177-4181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Dubus, A., P. Ledent, J. Lamotte-Brasseur, and J. M. Frère. 1996. The roles of residues Tyr150, Glu272, and His314 in class C β-lactamases. Proteins 25:473-485. [DOI] [PubMed] [Google Scholar]
  • 80.Dunne, E. F., P. D. Fey, P. Kludt, R. Reporter, F. Mostashari, P. Shillam, J. Wicklund, C. Miller, B. Holland, K. Stamey, T. J. Barrett, J. K. Rasheed, F. C. Tenover, E. M. Ribot, and F. J. Angulo. 2000. Emergence of domestically acquired ceftriaxone-resistant Salmonella infections associated with AmpC β-lactamase. JAMA 284:3151-3156. [DOI] [PubMed] [Google Scholar]
  • 81.Egorova, S., M. Timinouni, M. Demartin, S. A. Granier, J. M. Whichard, V. Sangal, L. Fabre, A. Delauné, M. Pardos, Y. Millemann, E. Espié, M. Achtman, P. A. Grimont, and F. X. Weill. 2008. Ceftriaxone-resistant Salmonella enterica serotype Newport, France. Emerg. Infect. Dis. 14:954-957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Empel, J., A. Baraniak, E. Literacka, A. Mrowka, J. Fiett, E. Sadowy, W. Hryniewicz, and M. Gniadkowski. 2008. Molecular survey of β-lactamases conferring resistance to newer β-lactams in Enterobacteriaceae isolates from Polish hospitals. Antimicrob. Agents Chemother. 52:2449-2454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Engelhardt, A., A. Yusof, P. Ho, K. Sjöström, and C. Johansson. 2008. Evaluation of a new Etest strip for AmpC detection using a large collection of genotypically characterized strains, abstr. D-280. Abstr. 48th Intersci. Conf. Antimicrob. Agents Chemother.
  • 84.Eriksson-Grennberg, K. G. 1968. Resistance of Escherichia coli to penicillins. II. An improved mapping of the ampA gene. Genet. Res. 12:147-156. [DOI] [PubMed] [Google Scholar]
  • 85.Eriksson-Grennberg, K. G., H. G. Boman, J. A. Jansson, and S. Thorén. 1965. Resistance of Escherichia coli to penicillins. I. Genetic study of some ampicillin-resistant mutants. J. Bacteriol. 90:54-62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Fakioglu, E., A. M. Queenan, K. Bush, S. G. Jenkins, and B. C. Herold. 2006. AmpC β-lactamase-producing Escherichia coli in neonatal meningitis: diagnostic and therapeutic challenge. J. Perinatol. 26:515-517. [DOI] [PubMed] [Google Scholar]
  • 87.Farrar, W. E., Jr., and N. M. O'Dell. 1976. β-Lactamase activity in Chromobacterium violaceum. J. Infect. Dis. 134:290-293. [DOI] [PubMed] [Google Scholar]
  • 88.Feller, G., Z. Zekhnini, J. Lamotte-Brasseur, and C. Gerday. 1997. Enzymes from cold-adapted microorganisms. The class C β-lactamase from the antarctic psychrophile Psychrobacter immobilis A5. Eur. J. Biochem. 244:186-191. [DOI] [PubMed] [Google Scholar]
  • 89.Fey, P. D., T. J. Safranek, M. E. Rupp, E. F. Dunne, E. Ribot, I. P. C., P. A. Bradford, F. J. Angulo, and S. H. Hinrichs. 2000. Ceftriaxone-resistant Salmonella infection acquired by a child from cattle. N. Engl. J. Med. 342:1242-1249. [DOI] [PubMed] [Google Scholar]
  • 90.Fihman, V., M. Rottman, Y. Benzerara, F. Delisle, R. Labia, A. Philippon, and G. Arlet. 2002. BUT-1: a new member in the chromosomal inducible class C β-lactamases family from a clinical isolate of Buttiauxella sp. FEMS Microbiol. Lett. 213:103-111. [DOI] [PubMed] [Google Scholar]
  • 91.Fitoussi, F., G. Arlet, P. A. Grimont, P. Lagrange, and A. Philippon. 1995. Escherichia hermannii: susceptibility pattern to β-lactams and production of β-lactamase. J. Antimicrob. Chemother. 36:537-543. [DOI] [PubMed] [Google Scholar]
  • 92.Flores, A. R., L. M. Parsons, and M. S. Pavelka, Jr. 2005. Genetic analysis of the β-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to β-lactam antibiotics. Microbiology 151:521-532. [DOI] [PubMed] [Google Scholar]
  • 93.Fortineau, N., L. Poirel, and P. Nordmann. 2001. Plasmid-mediated and inducible cephalosporinase DHA-2 from Klebsiella pneumoniae. J. Antimicrob. Chemother. 47:207-210. [DOI] [PubMed] [Google Scholar]
  • 94.Forward, K. R., B. M. Willey, D. E. Low, A. McGeer, M. A. Kapala, M. M. Kapala, and L. L. Burrows. 2001. Molecular mechanisms of cefoxitin resistance in Escherichia coli from the Toronto area hospitals. Diagn. Microbiol. Infect. Dis. 41:57-63. [DOI] [PubMed] [Google Scholar]
  • 95.Fosse, T., C. Giraud-Morin, I. Madinier, and R. Labia. 2003. Sequence analysis and biochemical characterisation of chromosomal CAV-1 (Aeromonas caviae), the parental cephalosporinase of plasmid-mediated AmpC ‘FOX’ cluster. FEMS Microbiol. Lett. 222:93-98. [DOI] [PubMed] [Google Scholar]
  • 96.Franceschini, N., L. Boschi, S. Pollini, R. Herman, M. Perilli, M. Galleni, J. M. Frère, G. Amicosante, and G. M. Rossolini. 2001. Characterization of OXA-29 from Legionella (Fluoribacter) gormanii: molecular class D β-lactamase with unusual properties. Antimicrob. Agents Chemother. 45:3509-3516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Franceschini, N., M. Galleni, J. M. Frère, A. Oratore, and G. Amicosante. 1993. A class-A β-lactamase from Pseudomonas stutzeri that is highly active against monobactams and cefotaxime. Biochem. J. 292:697-700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Gaillot, O., C. Clement, M. Simonet, and A. Philippon. 1997. Novel transferable β-lactam resistance with cephalosporinase characteristics in Salmonella enteritidis. J. Antimicrob. Chemother. 39:85-87. [DOI] [PubMed] [Google Scholar]
  • 99.Galleni, M., G. Amicosante, and J. M. Frère. 1988. A survey of the kinetic parameters of class C β-lactamases. Cephalosporins and other β-lactam compounds. Biochem. J. 255:123-129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Galleni, M., and J. M. Frère. 1988. A survey of the kinetic parameters of class C β-lactamases. Penicillins. Biochem. J. 255:119-122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Galleni, M., F. Lindberg, S. Normark, S. Cole, N. Honore, B. Joris, and J. M. Frere. 1988. Sequence and comparative analysis of three Enterobacter cloacae ampC β-lactamase genes and their products. Biochem. J. 250:753-760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Gates, M. L., C. C. Sanders, R. V. Goering, and W. E. Sanders, Jr. 1986. Evidence for multiple forms of type I chromosomal β-lactamase in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 30:453-457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Gazouli, M., M. E. Kaufmann, E. Tzelepi, H. Dimopoulou, O. Paniara, and L. S. Tzouvelekis. 1997. Study of an outbreak of cefoxitin-resistant Klebsiella pneumoniae in a general hospital. J. Clin. Microbiol. 35:508-510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Gazouli, M., L. S. Tzouvelekis, A. C. Vatopoulos, and E. Tzelepi. 1998. Transferable class C β-lactamases in Escherichia coli strains isolated in Greek hospitals and characterization of two enzyme variants (LAT-3 and LAT-4) closely related to Citrobacter freundii AmpC β-lactamase. J. Antimicrob. Chemother. 42:419-425. [DOI] [PubMed] [Google Scholar]
  • 105.Giles, W. P., A. K. Benson, M. E. Olson, R. W. Hutkins, J. M. Whichard, P. L. Winokur, and P. D. Fey. 2004. DNA sequence analysis of regions surrounding blaCMY-2 from multiple Salmonella plasmid backbones. Antimicrob. Agents Chemother. 48:2845-2852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Girlich, D., T. Naas, S. Bellais, L. Poirel, A. Karim, and P. Nordmann. 2000. Biochemical-genetic characterization and regulation of expression of an ACC-1-like chromosome-borne cephalosporinase from Hafnia alvei. Antimicrob. Agents Chemother. 44:1470-1478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Girlich, D., T. Naas, S. Bellais, L. Poirel, A. Karim, and P. Nordmann. 2000. Heterogeneity of AmpC cephalosporinases of Hafnia alvei clinical isolates expressing inducible or constitutive ceftazidime resistance phenotypes. Antimicrob. Agents Chemother. 44:3220-3223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Glupczynski, Y., T. D. Huang, C. Berhin, G. Claeys, M. Delmée, L. Ide, G. Ieven, D. Pierard, H. Rodriguez-Villalobos, M. Struelens, and J. Vaneldere. 2007. In vitro activity of temocillin against prevalent extended-spectrum beta-lactamases producing Enterobacteriaceae from Belgian intensive care units. Eur. J. Clin. Microbiol. Infect. Dis. 26:777-783. [DOI] [PubMed] [Google Scholar]
  • 109.Gonzalez Leiza, M., J. C. Perez-Diaz, J. Ayala, J. M. Casellas, J. Martinez-Beltran, K. Bush, and F. Baquero. 1994. Gene sequence and biochemical characterization of FOX-1 from Klebsiella pneumoniae, a new AmpC-type plasmid-mediated β-lactamase with two molecular variants. Antimicrob. Agents Chemother. 38:2150-2157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Goodner, B., G. Hinkle, S. Gattung, N. Miller, M. Blanchard, B. Qurollo, B. S. Goldman, Y. Cao, M. Askenazi, C. Halling, L. Mullin, K. Houmiel, J. Gordon, M. Vaudin, O. Iartchouk, A. Epp, F. Liu, C. Wollam, M. Allinger, D. Doughty, C. Scott, C. Lappas, B. Markelz, C. Flanagan, C. Crowell, J. Gurson, C. Lomo, C. Sear, G. Strub, C. Cielo, and S. Slater. 2001. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294:2323-2328. [DOI] [PubMed] [Google Scholar]
  • 111.Gould, V. C., A. Okazaki, and M. B. Avison. 2006. β-Lactam resistance and β-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships. J. Antimicrob. Chemother. 57:199-203. [DOI] [PubMed] [Google Scholar]
  • 112.Gray, J. T., L. L. Hungerford, P. J. Fedorka-Cray, and M. L. Headrick. 2004. Extended-spectrum-cephalosporin resistance in Salmonella enterica isolates of animal origin. Antimicrob. Agents Chemother. 48:3179-3181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Gupta, A., J. Fontana, C. Crowe, B. Bolstorff, A. Stout, S. Van Duyne, M. P. Hoekstra, J. M. Whichard, T. J. Barrett, and F. J. Angulo. 2003. Emergence of multidrug-resistant Salmonella enterica serotype Newport infections resistant to expanded-spectrum cephalosporins in the United States. J. Infect. Dis. 188:1707-1716. [DOI] [PubMed] [Google Scholar]
  • 114.Gutiérrez, O., C. Juan, E. Cercenado, F. Navarro, E. Bouza, P. Coll, J. L. Pérez, and A. Oliver. 2007. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob. Agents Chemother. 51:4329-4335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Haldorsen, B., B. Aasnaes, K. H. Dahl, A. M. Hanssen, G. S. Simonsen, T. R. Walsh, A. Sundsfjord, and E. W. Lundblad. 2008. The AmpC phenotype in Norwegian clinical isolates of Escherichia coli is associated with an acquired ISEcp1-like ampC element or hyperproduction of the endogenous AmpC. J. Antimicrob. Chemother. 62:694-702. [DOI] [PubMed] [Google Scholar]
  • 116.Hall, B. G., and M. Barlow. 2004. Evolution of the serine β-lactamases: past, present and future. Drug Resist. Updates 7:111-123. [DOI] [PubMed] [Google Scholar]
  • 117.Hanson, N. D., E. S. Moland, S. G. Hong, K. Propst, D. J. Novak, and S. J. Cavalieri. 2008. Surveillance of community-based reservoirs reveals the presence of CTX-M, imported AmpC, and OXA-30 β-lactamases in urine isolates of Klebsiella pneumoniae and Escherichia coli in a U.S. community. Antimicrob. Agents Chemother. 52:3814-3816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Hanson, N. D., and C. C. Sanders. 1999. Regulation of inducible AmpC β-lactamase expression among Enterobacteriaceae. Curr. Pharm. Des. 5:881-894. [PubMed] [Google Scholar]
  • 119.Hanson, N. D., K. S. Thomson, E. S. Moland, C. C. Sanders, G. Berthold, and R. G. Penn. 1999. Molecular characterization of a multiply resistant Klebsiella pneumoniae encoding ESBLs and a plasmid-mediated AmpC. J. Antimicrob. Chemother. 44:377-380. [DOI] [PubMed] [Google Scholar]
  • 120.Hayes, M. V., C. J. Thomson, and S. G. Amyes. 1994. Three beta-lactamases isolated from Aeromonas salmonicida, including a carbapenemase not detectable by conventional methods. Eur. J. Clin. Microbiol. Infect. Dis. 13:805-811. [DOI] [PubMed] [Google Scholar]
  • 121.Henderson, T. A., K. D. Young, S. A. Denome, and P. K. Elf. 1997. AmpC and AmpH, proteins related to the class C β-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli. J. Bacteriol. 179:6112-6121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Héritier, C., L. Poirel, and P. Nordmann. 2006. Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. Clin. Microbiol. Infect. 12:123-130. [DOI] [PubMed] [Google Scholar]
  • 123.Héritier, C., L. Poirel, and P. Nordmann. 2004. Genetic and biochemical characterization of a chromosome-encoded carbapenem-hydrolyzing Ambler class D β-lactamase from Shewanella algae. Antimicrob. Agents Chemother. 48:1670-1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Hernández-Allés, S., V. J. Benedí, L. Martínez-Martínez, A. Pascual, A. Aguilar, J. M. Tomás, and S. Albertí. 1999. Development of resistance during antimicrobial therapy caused by insertion sequence interruption of porin genes. Antimicrob. Agents Chemother. 43:937-939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Hernández-Allés, S., M. Conejo, A. Pascual, J. M. Tomás, V. J. Benedí, and L. Martínez-Martínez. 2000. Relationship between outer membrane alterations and susceptibility to antimicrobial agents in isogenic strains of Klebsiella pneumoniae. J. Antimicrob. Chemother. 46:273-277. [DOI] [PubMed] [Google Scholar]
  • 126.Hidri, N., G. Barnaud, D. Decré, C. Cerceau, V. Lalande, J. C. Petit, R. Labia, and G. Arlet. 2005. Resistance to ceftazidime is associated with a S220Y substitution in the omega loop of the AmpC β-lactamase of a Serratia marcescens clinical isolate. J. Antimicrob. Chemother. 55:496-499. [DOI] [PubMed] [Google Scholar]
  • 127.Higgins, C. S., M. B. Avison, L. Jamieson, A. M. Simm, P. M. Bennett, and T. R. Walsh. 2001. Characterization, cloning and sequence analysis of the inducible Ochrobactrum anthropi AmpC β-lactamase. J. Antimicrob. Chemother. 47:745-754. [DOI] [PubMed] [Google Scholar]
  • 128.Hirakawa, H., K. Nishino, J. Yamada, T. Hirata, and A. Yamaguchi. 2003. β-Lactam resistance modulated by the overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J. Antimicrob. Chemother. 52:576-582. [DOI] [PubMed] [Google Scholar]
  • 129.Honoré, N., M. H. Nicolas, and S. T. Cole. 1986. Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. EMBO J. 5:3709-3714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Hope, R., M. Warner, N. A. Potz, E. J. Fagan, D. James, and D. M. Livermore. 2006. Activity of tigecycline against ESBL-producing and AmpC-hyperproducing Enterobacteriaceae from south-east England. J. Antimicrob. Chemother. 58:1312-1314. [DOI] [PubMed] [Google Scholar]
  • 131.Hopkins, J. M., and K. J. Towner. 1990. Enhanced resistance to cefotaxime and imipenem associated with outer membrane protein alterations in Enterobacter aerogenes. J. Antimicrob. Chemother. 25:49-55. [DOI] [PubMed] [Google Scholar]
  • 132.Hopkins, K. L., M. J. Batchelor, E. Liebana, A. P. Deheer-Graham, and E. J. Threlfall. 2006. Characterisation of CTX-M and ampC genes in human isolates of Escherichia coli identified between 1995 and 2003 in England and Wales. Int. J. Antimicrob. Agents 28:180-192. [DOI] [PubMed] [Google Scholar]
  • 133.Hopkins, K. L., A. Deheer-Graham, E. Karisik, M. J. Batchelor, E. Liebana, and E. J. Threlfall. 2006. New plasmid-mediated AmpC β-lactamase (CMY-21) in Escherichia coli isolated in the UK. Int. J. Antimicrob. Agents 28:80-82. [DOI] [PubMed] [Google Scholar]
  • 134.Horii, T., Y. Arakawa, M. Ohta, S. Ichiyama, R. Wacharotayankun, and N. Kato. 1993. Plasmid-mediated AmpC-type β-lactamase isolated from Klebsiella pneumoniae confers resistance to broad-spectrum β-lactams, including moxalactam. Antimicrob. Agents Chemother. 37:984-990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Hossain, A., M. D. Reisbig, and N. D. Hanson. 2004. Plasmid-encoded functions compensate for the biological cost of AmpC overexpression in a clinical isolate of Salmonella typhimurium. J. Antimicrob. Chemother. 53:964-970. [DOI] [PubMed] [Google Scholar]
  • 136.Huang, I. F., C. H. Chiu, M. H. Wang, C. Y. Wu, K. S. Hsieh, and C. C. Chiou. 2005. Outbreak of dysentery associated with ceftriaxone-resistant Shigella sonnei: first report of plasmid-mediated CMY-2-type AmpC β-lactamase resistance in S. sonnei. J. Clin. Microbiol. 43:2608-2612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Hujer, K. M., N. S. Hamza, A. M. Hujer, F. Perez, M. S. Helfand, C. R. Bethel, J. M. Thomson, V. E. Anderson, M. Barlow, L. B. Rice, F. C. Tenover, and R. A. Bonomo. 2005. Identification of a new allelic variant of the Acinetobacter baumannii cephalosporinase, ADC-7 β-lactamase: defining a unique family of class C enzymes. Antimicrob. Agents Chemother. 49:2941-2948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Humeniuk, C., G. Arlet, V. Gautier, P. Grimont, R. Labia, and A. Philippon. 2002. β-Lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob. Agents Chemother. 46:3045-3049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Jacobs, C., J. M. Frère, and S. Normark. 1997. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in gram-negative bacteria. Cell 88:823-832. [DOI] [PubMed] [Google Scholar]
  • 140.Jacobs, C., L. Huang, E. Bartowsky, S. Normark, and J. T. Park. 1994. Bacterial cell wall recycling provides cytosolic muropeptides as effector for β-lactamase induction. EMBO J. 13:4684-4694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Jacoby, G. A., D. M. Mills, and N. Chow. 2004. Role of β-lactamases and porins in resistance to ertapenem and other β-lactams in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48:3203-3206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Jacoby, G. A., and J. Tran. 1999. Sequence of the MIR-1 β-lactamase gene. Antimicrob. Agents Chemother. 43:1759-1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Jacoby, G. A., K. E. Walsh, and V. J. Walker. 2006. Identification of extended-spectrum, AmpC, and carbapenem-hydrolyzing β-lactamases in Escherichia coli and Klebsiella pneumoniae by disk tests. J. Clin. Microbiol. 44:1971-1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Jaurin, B., and T. Grundström. 1981. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of β-lactamases of the penicillinase type. Proc. Natl. Acad. Sci. USA 78:4897-4901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Jaurin, B., T. Grundström, T. Edlund, and S. Normark. 1981. The E. coli β-lactamase attenuator mediates growth rate-dependent regulation. Nature 290:221-225. [DOI] [PubMed] [Google Scholar]
  • 146.Jaurin, B., and S. Normark. 1983. Insertion of IS2 creates a novel ampC promoter in Escherichia coli. Cell 32:809-816. [DOI] [PubMed] [Google Scholar]
  • 147.Jones, R. N., J. T. Kirby, and P. R. Rhomberg. 2008. Comparative activity of meropenem in US medical centers (2007): initiating the 2nd decade of MYSTIC program surveillance. Diagn. Microbiol. Infect. Dis. 61:203-213. [DOI] [PubMed] [Google Scholar]
  • 148.Joris, B., F. De Meester, M. Galleni, S. Masson, J. Dusart, J. M. Frère, J. Van Beeumen, K. Bush, and R. Sykes. 1986. Properties of a class C β-lactamase from Serratia marcescens. Biochem. J. 239:581-586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Joris, B., P. Ledent, O. Dideberg, E. Fonzé, J. Lamotte-Brasseur, J. A. Kelly, J. M. Ghuysen, and J. M. Frère. 1991. Comparison of the sequences of class A β-lactamases and of the secondary structure elements of penicillin-recognizing proteins. Antimicrob. Agents Chemother. 35:2294-2301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Juan, C., M. D. Macia, O. Gutierrez, C. Vidal, J. L. Perez, and A. Oliver. 2005. Molecular mechanisms of β-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains. Antimicrob. Agents Chemother. 49:4733-4738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Juan, C., B. Moyá, J. L. Pérez, and A. Oliver. 2006. Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level β-lactam resistance involves three AmpD homologues. Antimicrob. Agents Chemother. 50:1780-1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Kaczmarek, F. M., F. Dib-Hajj, W. Shang, and T. D. Gootz. 2006. High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of blaACT-1 β-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin PhoE. Antimicrob. Agents Chemother. 50:3396-3406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Kaneko, K., R. Okamoto, R. Nakano, S. Kawakami, and M. Inoue. 2005. Gene mutations responsible for overexpression of AmpC β-lactamase in some clinical isolates of Enterobacter cloacae. J. Clin. Microbiol. 43:2955-2958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Kang, C. I., H. Pai, S. H. Kim, H. B. Kim, E. C. Kim, M. D. Oh, and K. W. Choe. 2004. Cefepime and the inoculum effect in tests with Klebsiella pneumoniae producing plasmid-mediated AmpC-type β-lactamase. J. Antimicrob. Chemother. 54:1130-1133. [DOI] [PubMed] [Google Scholar]
  • 155.Kang, M. S., T. E. Besser, and D. R. Call. 2006. Variability in the region downstream of the blaCMY-2 β-lactamase gene in Escherichia coli and Salmonella enterica plasmids. Antimicrob. Agents Chemother. 50:1590-1593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Kaye, K. S., S. Cosgrove, A. Harris, G. M. Eliopoulos, and Y. Carmeli. 2001. Risk factors for emergence of resistance to broad-spectrum cephalosporins among Enterobacter spp. Antimicrob. Agents Chemother. 45:2628-2630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Kazmierczak, A., X. Cordin, J. M. Duez, E. Siebor, A. Pechinot, and J. Sirot. 1990. Differences between clavulanic acid and sulbactam in induction and inhibition of cephalosporinases in enterobacteria. J. Int. Med. Res. 18(Suppl. 4):67D-77D. [PubMed] [Google Scholar]
  • 158.Kim, J. Y., H. I. Jung, Y. J. An, J. H. Lee, S. J. Kim, S. H. Jeong, K. J. Lee, P. G. Suh, H. S. Lee, S. H. Lee, and S. S. Cha. 2006. Structural basis for the extended substrate spectrum of CMY-10, a plasmid-encoded class C β-lactamase. Mol. Microbiol. 60:907-916. [DOI] [PubMed] [Google Scholar]
  • 159.Kimura, H., M. Izawa, and Y. Sumino. 1996. Molecular analysis of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactamgenus YK90. Appl. Microbiol. Biotechnol. 44:589-596. [DOI] [PubMed] [Google Scholar]
  • 160.Kitzis, M. D., B. Ferre, A. Coutrot, J. F. Acar, and L. Gutmann. 1989. In vitro activity of combinations of beta-lactam antibiotics with beta-lactamase inhibitors against cephalosporinase-producing bacteria. Eur. J. Clin. Microbiol. Infect. Dis. 8:783-788. [DOI] [PubMed] [Google Scholar]
  • 161.Knott-Hunziker, V., S. Petursson, G. S. Jayatilake, S. G. Waley, B. Jaurin, and T. Grundström. 1982. Active sites of β-lactamases. Biochem. J. 201:621-627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Knox, J. R., P. C. Moews, and J. M. Frere. 1996. Molecular evolution of bacterial β-lactam resistance. Chem. Biol. 3:937-947. [DOI] [PubMed] [Google Scholar]
  • 163.Kohler, T., M. Michea-Hamzehpour, S. F. Epp, and J. C. Pechere. 1999. Carbapenem activities against Pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob. Agents Chemother. 43:424-427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Kong, K. F., S. R. Jayawardena, S. D. Indulkar, A. Del Puerto, C. L. Koh, N. Hoiby, and K. Mathee. 2005. Pseudomonas aeruginosa AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB β-lactamases, proteases, quorum sensing, and other virulence factors. Antimicrob. Agents Chemother. 49:4567-4575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Kuga, A., R. Okamoto, and M. Inoue. 2000. ampR gene mutations that greatly increase class C β-lactamase activity in Enterobacter cloacae. Antimicrob. Agents Chemother. 44:561-567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Lartigue, M. F., L. Poirel, D. Aubert, and P. Nordmann. 2006. In vitro analysis of ISEcp1B-mediated mobilization of naturally occurring β-lactamase gene blaCTX-M of Kluyvera ascorbata. Antimicrob. Agents Chemother. 50:1282-1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Lau, S. K., P. L. Ho, M. W. Li, H. W. Tsoi, R. W. Yung, P. C. Woo, and K. Y. Yuen. 2005. Cloning and characterization of a chromosomal class C β-lactamase and its regulatory gene in Laribacter hongkongensis. Antimicrob. Agents Chemother. 49:1957-1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Lee, E. H., M. H. Nicolas, M. D. Kitzis, G. Pialoux, E. Collatz, and L. Gutmann. 1991. Association of two resistance mechanisms in a clinical isolate of Enterobacter cloacae with high-level resistance to imipenem. Antimicrob. Agents Chemother. 35:1093-1098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Lee, K., S. G. Hong, Y. J. Park, H. S. Lee, W. Song, J. Jeong, D. Yong, and Y. Chong. 2005. Evaluation of phenotypic screening methods for detecting plasmid-mediated AmpC β-lactamases-producing isolates of Escherichia coli and Klebsiella pneumoniae. Diagn. Microbiol. Infect. Dis. 53:319-323. [DOI] [PubMed] [Google Scholar]
  • 170.Lee, K., M. Lee, J. H. Shin, M. H. Lee, S. H. Kang, A. J. Park, D. Yong, and Y. Chong. 2006. Prevalence of plasmid-mediated AmpC β-lactamases in Escherichia coli and Klebsiella pneumoniae in Korea. Microb. Drug Resist. 12:44-49. [DOI] [PubMed] [Google Scholar]
  • 171.Lee, K., D. Yong, Y. S. Choi, J. H. Yum, J. M. Kim, N. Woodford, D. M. Livermore, and Y. Chong. 2007. Reduced imipenem susceptibility in Klebsiella pneumoniae clinical isolates with plasmid-mediated CMY-2 and DHA-1 β-lactamases co-mediated by porin loss. Int. J. Antimicrob. Agents 29:201-206. [DOI] [PubMed] [Google Scholar]
  • 172.Lee, S. H., S. H. Jeong, and Y. M. Park. 2003. Characterization of blaCMY-10 a novel, plasmid-encoded AmpC-type β-lactamase gene in a clinical isolate of Enterobacter aerogenes. J. Appl. Microbiol. 95:744-752. [DOI] [PubMed] [Google Scholar]
  • 173.Lee, S. H., J. H. Lee, M. J. Heo, I. K. Bae, S. H. Jeong, and S. S. Cha. 2007. Exact location of the region responsible for the extended substrate spectrum in class C β-lactamases. Antimicrob. Agents Chemother. 51:3778-3779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.Li, Y., Q. Li, Y. Du, X. Jiang, J. Tang, J. Wang, G. Li, and Y. Jiang. 2008. Prevalence of plasmid-mediated AmpC β-lactamases in a Chinese university hospital from 2003 to 2005: first report of CMY-2-type AmpC β-lactamase resistance in China. J. Clin. Microbiol. 46:1317-1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Liassine, N., S. Madec, B. Ninet, C. Metral, M. Fouchereau-Peron, R. Labia, and R. Auckenthaler. 2002. Postneurosurgical meningitis due to Proteus penneri with selection of a ceftriaxone-resistant isolate: analysis of chromosomal class A β-lactamase HugA and its LysR-type regulatory protein HugR. Antimicrob. Agents Chemother. 46:216-219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Liebana, E., M. Gibbs, C. Clouting, L. Barker, F. A. Clifton-Hadley, E. Pleydell, B. Abdalhamid, N. D. Hanson, L. Martin, C. Poppe, and R. H. Davies. 2004. Characterization of β-lactamases responsible for resistance to extended-spectrum cephalosporins in Escherichia coli and Salmonella enterica strains from food-producing animals in the United Kingdom. Microb. Drug Resist. 10:1-9. [DOI] [PubMed] [Google Scholar]
  • 177.Lin, J. W., S. F. Weng, Y. F. Chao, and Y. T. Chung. 2005. Characteristic analysis of the ampC gene encoding β-lactamase from Photobacterium phosphoreum. Biochem. Biophys. Res. Commun. 326:539-547. [DOI] [PubMed] [Google Scholar]
  • 178.Linberg, F., and S. Normark. 1986. Sequence of the Citrobacter freundii OS60 chromosomal ampC β-lactamase gene. Eur. J. Biochem. 156:441-445. [DOI] [PubMed] [Google Scholar]
  • 179.Lindquist, S., K. Weston-Hafer, H. Schmidt, C. Pul, G. Korfmann, J. Erickson, C. Sanders, H. H. Martin, and S. Normark. 1993. AmpG, a signal transducer in chromosomal β-lactamase induction. Mol. Microbiol. 9:703-715. [DOI] [PubMed] [Google Scholar]
  • 180.Linström, E. B., H. G. Boman, and B. B. Steele. 1970. Resistance of Escherichia coli to penicillins. VI. Purification and characterization of the chromosomally mediated penicillinase present in ampA-containing strains. J. Bacteriol. 101:218-231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Lister, P. D., V. M. Gardner, and C. C. Sanders. 1999. Clavulanate induces expression of the Pseudomonas aeruginosa AmpC cephalosporinase at physiologically relevant concentrations and antagonizes the antibacterial activity of ticarcillin. Antimicrob. Agents Chemother. 43:882-889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Literacka, E., J. Empel, A. Baraniak, E. Sadowy, W. Hryniewicz, and M. Gniadkowski. 2004. Four variants of the Citrobacter freundii AmpC-type cephalosporinases, including novel enzymes CMY-14 and CMY-15, in a Proteus mirabilis clone widespread in Poland. Antimicrob. Agents Chemother. 48:4136-4143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Liu, Y. F., J. J. Yan, W. C. Ko, S. H. Tsai, and J. J. Wu. 2008. Characterization of carbapenem-non-susceptible Escherichia coli isolates from a university hospital in Taiwan. J. Antimicrob. Chemother. 61:1020-1023. [DOI] [PubMed] [Google Scholar]
  • 184.Livermore, D. M. 1987. Clinical significance of beta-lactamase induction and stable derepression in gram-negative rods. Eur. J. Clin. Microbiol. 6:439-445. [DOI] [PubMed] [Google Scholar]
  • 185.Livermore, D. M. 1992. Interplay of impermeability and chromosomal β-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 36:2046-2048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186.Livermore, D. M. 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34:634-640. [DOI] [PubMed] [Google Scholar]
  • 187.Livermore, D. M., R. Hope, E. J. Fagan, M. Warner, N. Woodford, and N. Potz. 2006. Activity of temocillin against prevalent ESBL- and AmpC-producing Enterobacteriaceae from south-east England. J. Antimicrob. Chemother. 57:1012-1014. [DOI] [PubMed] [Google Scholar]
  • 188.Livermore, D. M., and N. Woodford. 2006. The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol. 14:413-420. [DOI] [PubMed] [Google Scholar]
  • 189.Livermore, D. M., and Y. J. Yang. 1987. β-Lactamase lability and inducer power of newer β-lactam antibiotics in relation to their activity against β-lactamase-inducibility mutants of Pseudomonas aeruginosa. J. Infect. Dis. 155:775-782. [DOI] [PubMed] [Google Scholar]
  • 190.Lobkovsky, E., P. C. Moews, H. Liu, H. Zhao, J. M. Frere, and J. R. Knox. 1993. Evolution of an enzyme activity: crystallographic structure at 2-Å resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc. Natl. Acad. Sci. USA 90:11257-11261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Mahlen, S. D., S. S. Morrow, B. Abdalhamid, and N. D. Hanson. 2003. Analyses of ampC gene expression in Serratia marcescens reveal new regulatory properties. J. Antimicrob. Chemother. 51:791-802. [DOI] [PubMed] [Google Scholar]
  • 192.Mainardi, J. L., P. Mugnier, A. Coutrot, A. Buu-Hoï, E. Collatz, and L. Gutmann. 1997. Carbapenem resistance in a clinical isolate of Citrobacter freundii. Antimicrob. Agents Chemother. 41:2352-2354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193.Mammeri, H., F. Eb, A. Berkani, and P. Nordmann. 2008. Molecular characterization of AmpC-producing Escherichia coli clinical isolates recovered in a French hospital. J. Antimicrob. Chemother. 61:498-503. [DOI] [PubMed] [Google Scholar]
  • 194.Mammeri, H., H. Nazic, T. Naas, L. Poirel, S. Leotard, and P. Nordmann. 2004. AmpC β-lactamase in an Escherichia coli clinical isolate confers resistance to expanded-spectrum cephalosporins. Antimicrob. Agents Chemother. 48:4050-4053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Mammeri, H., P. Nordmann, A. Berkani, and F. Eb. 2008. Contribution of extended-spectrum AmpC (ESAC) β-lactamases to carbapenem resistance in Escherichia coli. FEMS Microbiol. Lett. 282:238-240. [DOI] [PubMed] [Google Scholar]
  • 196.Mammeri, H., L. Poirel, P. Bemer, H. Drugeon, and P. Nordmann. 2004. Resistance to cefepime and cefpirome due to a 4-amino-acid deletion in the chromosome-encoded AmpC β-lactamase of a Serratia marcescens clinical isolate. Antimicrob. Agents Chemother. 48:716-720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197.Mammeri, H., L. Poirel, N. Fortineau, and P. Nordmann. 2006. Naturally occurring extended-spectrum cephalosporinases in Escherichia coli. Antimicrob. Agents Chemother. 50:2573-2576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Mammeri, H., L. Poirel, H. Nazik, and P. Nordmann. 2006. Cloning and functional characterization of the Ambler class C β-lactamase of Yersinia ruckeri. FEMS Microbiol. Lett. 257:57-62. [DOI] [PubMed] [Google Scholar]
  • 199.Mammeri, H., L. Poirel, and P. Nordmann. 2007. Extension of the hydrolysis spectrum of AmpC β-lactamase of Escherichia coli due to amino acid insertion in the H-10 helix. J. Antimicrob. Chemother. 60:490-494. [DOI] [PubMed] [Google Scholar]
  • 200.Manchanda, V., and N. P. Singh. 2003. Occurrence and detection of AmpC β-lactamases among gram-negative clinical isolates using a modified three-dimensional test at Guru Tegh Bahadur Hospital, Delhi, India. J. Antimicrob. Chemother. 51:415-418. [DOI] [PubMed] [Google Scholar]
  • 201.Martínez-Martínez, L., M. C. Conejo, A. Pascual, S. Hernández-Allés, S. Ballesta, E. Ramírez De Arellano-Ramos, V. J. Benedí, and E. J. Perea. 2000. Activities of imipenem and cephalosporins against clonally related strains of Escherichia coli hyperproducing chromosomal β-lactamase and showing altered porin profiles. Antimicrob. Agents Chemother. 44:2534-2536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Martínez-Martínez, L., S. Hernández-Allés, S. Albertí, J. M. Tomás, V. J. Benedi, and G. A. Jacoby. 1996. In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum cephalosporins. Antimicrob. Agents Chemother. 40:342-348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 203.Martínez-Martínez, L., A. Pascual, S. Hernández-Allés, D. Alvarez-Díaz, A. I. Suárez, J. Tran, V. J. Benedí, and G. A. Jacoby. 1999. Roles of β-lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae. Antimicrob. Agents Chemother. 43:1669-1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.Matagne, A., A. M. Misselyn-Bauduin, B. Joris, T. Erpicum, B. Granier, and J. M. Frère. 1990. The diversity of the catalytic properties of class A β-lactamases. Biochem. J. 265:131-146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 205.Matsubara, N., A. Yotsuji, K. Kumano, M. Inoue, and S. Mitsuhashi. 1981. Purification and some properties of a cephalosporinase from Proteus vulgaris. Antimicrob. Agents Chemother. 19:185-187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Matsumura, N., S. Minami, and S. Mitsuhashi. 1998. Sequences of homologous β-lactamases from clinical isolates of Serratia marcescens with different substrate specificities. Antimicrob. Agents Chemother. 42:176-179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207.Matsuura, M., H. Nakazawa, M. Inoue, and S. Mitsuhashi. 1980. Purification and biochemical properties of β-lactamase produced by Proteus rettgeri. Antimicrob. Agents Chemother. 18:687-690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Maurelli, A. T., R. E. Fernandez, C. A. Bloch, C. K. Rode, and A. Fasano. 1998. “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl. Acad. Sci. USA 95:3943-3948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.Michaux, C., J. Massant, F. Kerff, J. M. Frère, J. D. Docquier, I. Vandenberghe, B. Samyn, A. Pierrard, G. Feller, P. Charlier, J. Van Beeumen, and J. Wouters. 2008. Crystal structure of a cold-adapted class C β-lactamase. FEBS J. 275:1687-1697. [DOI] [PubMed] [Google Scholar]
  • 210.Migliavacca, R., E. Nucleo, M. M. D'Andrea, M. Spalla, T. Giani, and L. Pagani. 2007. Acquired AmpC type beta-lactamases: an emerging problem in Italian long-term care and rehabilitation facilities. New Microbiol. 30:295-298. [PubMed] [Google Scholar]
  • 211.Minami, S., M. Inoue, and S. Mitsuhashi. 1980. Purification and properties of a cephalosporinase from Enterobacter cloacae. Antimicrob. Agents Chemother. 18:853-857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Minami, S., M. Inoue, and S. Mitsuhashi. 1980. Purification and properties of cephalosporinase in Escherichia coli. Antimicrob. Agents Chemother. 18:77-80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Miriagou, V., P. T. Tassios, N. J. Legakis, and L. S. Tzouvelekis. 2004. Expanded-spectrum cephalosporin resistance in non-typhoid Salmonella. Int. J. Antimicrob. Agents 23:547-555. [DOI] [PubMed] [Google Scholar]
  • 214.Miriagou, V., L. S. Tzouvelekis, L. Villa, E. Lebessi, A. C. Vatopoulos, A. Carattoli, and E. Tzelepi. 2004. CMY-13, a novel inducible cephalosporinase encoded by an Escherichia coli plasmid. Antimicrob. Agents Chemother. 48:3172-3174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 215.Mittal, S., S. Mallik, S. Sharma, and J. S. Virdi. 2007. Characteristics of β-lactamases and their genes (blaA and blaB) in Yersinia intermedia and Y. frederiksenii. BMC Microbiol. 7:25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.Moland, E. S., J. A. Black, J. Ourada, M. D. Reisbig, N. D. Hanson, and K. S. Thomson. 2002. Occurrence of newer β-lactamases in Klebsiella pneumoniae isolates from 24 U.S. hospitals. Antimicrob. Agents Chemother. 46:3837-3842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Moland, E. S., N. D. Hanson, J. A. Black, A. Hossain, W. Song, and K. S. Thomson. 2006. Prevalence of newer β-lactamases in gram-negative clinical isolates collected in the United States from 2001 to 2002. J. Clin. Microbiol. 44:3318-3324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 218.Monnaie, D., and J. M. Frere. 1993. Interaction of clavulanate with class C β-lactamases. FEBS Lett. 334:269-271. [DOI] [PubMed] [Google Scholar]
  • 219.Moya, B., C. Juan, S. Albertí, J. L. Pérez, and A. Oliver. 2008. Benefit of having multiple ampD genes for acquiring β-lactam resistance without losing fitness and virulence in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 52:3694-3700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 219a.Moya, B., C. Juan, J. Blazquez, L. Zamorano, J. L. Perez, A. Oliver, and H. Son Dureta. 2008. Abstr. 48th Intersci. Conf. Antimicrob. Agents Chemother., abstr. C1-3729.
  • 220.Mulvey, M. R., E. Bryce, D. A. Boyd, M. Ofner-Agostini, A. M. Land, A. E. Simor, and S. Paton. 2005. Molecular characterization of cefoxitin-resistant Escherichia coli from Canadian hospitals. Antimicrob. Agents Chemother. 49:358-365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221.Murata, T., S. Minami, K. Yasuda, S. Iyobe, M. Inoue, and S. Mitsuhashi. 1981. Purification and properties of cephalosporinase from Pseudomonas aeruginosa. J. Antibiot. (Tokyo) 34:1164-1170. [DOI] [PubMed] [Google Scholar]
  • 222.M'Zali, F. H., J. Heritage, D. M. Gascoyne-Binzi, M. Denton, N. J. Todd, and P. M. Hawkey. 1997. Transcontinental importation into the UK of Escherichia coli expressing a plasmid-mediated AmpC-type β-lactamase exposed during an outbreak of SHV-5 extended-spectrum β-lactamase in a Leeds hospital. J. Antimicrob. Chemother. 40:823-831. [DOI] [PubMed] [Google Scholar]
  • 223.Naas, T., D. Aubert, N. Fortineau, and P. Nordmann. 2002. Cloning and sequencing of the β-lactamase gene and surrounding DNA sequences of Citrobacter braakii, Citrobacter murliniae, Citrobacter werkmanii, Escherichia fergusonii and Enterobacter cancerogenus. FEMS Microbiol. Lett. 215:81-87. [DOI] [PubMed] [Google Scholar]
  • 224.Naas, T., D. Aubert, A. Özcan, and P. Nordmann. 2007. Chromosome-encoded narrow-spectrum Ambler class A β-lactamase GIL-1 from Citrobacter gillenii. Antimicrob. Agents Chemother. 51:1365-1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Naas, T., D. Aubert, S. Vimont, and P. Nordmann. 2004. Identification of a chromosome-borne class C β-lactamase from Erwinia rhapontici. J. Antimicrob. Chemother. 54:932-935. [DOI] [PubMed] [Google Scholar]
  • 226.Nadjar, D., R. Labia, C. Cerceau, C. Bizet, A. Philippon, and G. Arlet. 2001. Molecular characterization of chromosomal class C β-lactamase and its regulatory gene in Ochrobactrum anthropi. Antimicrob. Agents Chemother. 45:2324-2330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 227.Nadjar, D., M. Rouveau, C. Verdet, J. Donay, J. Herrmann, P. H. Lagrange, A. Philippon, and G. Arlet. 2000. Outbreak of Klebsiella pneumoniae producing transferable AmpC-type β-lactamase (ACC-1) originating from Hafnia alvei. FEMS Microbiol. Lett. 187:35-40. [DOI] [PubMed] [Google Scholar]
  • 228.Nakano, R., R. Okamoto, N. Nagano, and M. Inoue. 2007. Resistance to gram-negative organisms due to high-level expression of plasmid-encoded ampC β-lactamase blaCMY-4 promoted by insertion sequence ISEcp1. J. Infect. Chemother. 13:18-23. [DOI] [PubMed] [Google Scholar]
  • 229.Nakano, R., R. Okamoto, Y. Nakano, K. Kaneko, N. Okitsu, Y. Hosaka, and M. Inoue. 2004. CFE-1, a novel plasmid-encoded AmpC β-lactamase with an ampR gene originating from Citrobacter freundii. Antimicrob. Agents Chemother. 48:1151-1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 230.Nasim, K., S. Elsayed, J. D. Pitout, J. Conly, D. L. Church, and D. B. Gregson. 2004. New method for laboratory detection of AmpC β-lactamases in Escherichia coli and Klebsiella pneumoniae. J. Clin. Microbiol. 42:4799-4802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 231.Navon-Venezia, S., A. Leavitt, and Y. Carmeli. 2007. High tigecycline resistance in multidrug-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 59:772-774. [DOI] [PubMed] [Google Scholar]
  • 232.Neu, H. C., N. X. Chin, K. Jules, and P. Labthavikul. 1986. The activity of BMY 28142 a new broad spectrum β-lactamase stable cephalosporin. J. Antimicrob. Chemother. 17:441-452. [DOI] [PubMed] [Google Scholar]
  • 233.Nikaido, H., W. Liu, and E. Y. Rosenberg. 1990. Outer membrane permeability and β-lactamase stability of dipolar ionic cephalosporins containing methoxyimino substituents. Antimicrob. Agents Chemother. 34:337-342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 234.Niumsup, P., A. M. Simm, K. Nurmahomed, T. R. Walsh, P. M. Bennett, and M. B. Avison. 2003. Genetic linkage of the penicillinase gene, amp, and blrAB, encoding the regulator of β-lactamase expression in Aeromonas spp. J. Antimicrob. Chemother. 51:1351-1358. [DOI] [PubMed] [Google Scholar]
  • 235.Nordmann, P., and H. Mammeri. 2007. Extended-spectrum cephalosporinases: structure, detection and epidemiology. Future Microbiol. 2:297-307. [DOI] [PubMed] [Google Scholar]
  • 236.Nordström, K., L. G. Burman, and K. G. Eriksson-Grennberg. 1970. Resistance of Escherichia coli to penicillins. 8. Physiology of a class II ampicillin-resistant mutant. J. Bacteriol. 101:659-668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 237.Nukaga, M., S. Haruta, K. Tanimoto, K. Kogure, K. Taniguchi, M. Tamaki, and T. Sawai. 1995. Molecular evolution of a class C β-lactamase extending its substrate specificity. J. Biol. Chem. 270:5729-5735. [DOI] [PubMed] [Google Scholar]
  • 238.Odeh, R., S. Kelkar, A. M. Hujer, R. A. Bonomo, P. C. Schreckenberger, and J. P. Quinn. 2002. Broad resistance due to plasmid-mediated AmpC β-lactamases in clinical isolates of Escherichia coli. Clin. Infect. Dis. 35:140-145. [DOI] [PubMed] [Google Scholar]
  • 239.Ogata, H., P. Renesto, S. Audic, C. Robert, G. Blanc, P. E. Fournier, H. Parinello, J. M. Claverie, and D. Raoult. 2005. The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol. 3:e248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 240.Ohana, S., V. Leflon, E. Ronco, M. Rottman, D. Guillemot, S. Lortat-Jacob, P. Denys, G. Loubert, M. H. Nicolas-Chanoine, J. L. Gaillard, and C. Lawrence. 2005. Spread of a Klebsiella pneumoniae strain producing a plasmid-mediated ACC-1 AmpC β-lactamase in a teaching hospital admitting disabled patients. Antimicrob. Agents Chemother. 49:2095-2097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 241.Olsson, O., S. Bergström, F. P. Lindberg, and S. Normark. 1983. ampC β-lactamase hyperproduction in Escherichia coli: natural ampicillin resistance generated by horizontal chromosomal DNA transfer from Shigella. Proc. Natl. Acad. Sci. USA 80:7556-7560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Olsson, O., S. Bergström, and S. Normark. 1982. Identification of a novel ampC β-lactamase promoter in a clinical isolate of Escherichia coli. EMBO J. 1:1411-1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 243.Padilla, E., D. Alonso, A. Doménech-Sánchez, C. Gomez, J. L. Pérez, S. Albertí, and N. Borrell. 2006. Effect of porins and plasmid-mediated AmpC β-lactamases on the efficacy of β-lactams in rat pneumonia caused by Klebsiella pneumoniae. Antimicrob. Agents Chemother. 50:2258-2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 244.Pai, H., C. I. Kang, J. H. Byeon, K. D. Lee, W. B. Park, H. B. Kim, E. C. Kim, M. D. Oh, and K. W. Choe. 2004. Epidemiology and clinical features of bloodstream infections caused by AmpC-type-β-lactamase-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48:3720-3728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Pai, H., J. Kim, J. H. Lee, K. W. Choe, and N. Gotoh. 2001. Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 45:480-484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 246.Palasubramaniam, S., R. Karunakaran, G. G. Gin, S. Muniandy, and N. Parasakthi. 2007. Imipenem-resistance in Klebsiella pneumoniae in Malaysia due to loss of OmpK36 outer membrane protein coupled with AmpC hyperproduction. Int. J. Infect. Dis. 11:472-474. [DOI] [PubMed] [Google Scholar]
  • 247.Papagiannitsis, C. C., L. S. Tzouvelekis, E. Tzelepi, and V. Miriagou. 2007. Plasmid-encoded ACC-4, an extended-spectrum cephalosporinase variant from Escherichia coli. Antimicrob. Agents Chemother. 51:3763-3767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248.Papanicolaou, G. A., A. A. Medeiros, and G. A. Jacoby. 1990. Novel plasmid-mediated β-lactamase (MIR-1) conferring resistance to oxyimino- and α-methoxy β-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 34:2200-2209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 249.Partridge, S. R. 2007. Genetic environment of ISEcp1 and blaACC-1. Antimicrob. Agents Chemother. 51:2658-2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 250.Pasteran, F. G., L. Otaegui, L. Guerriero, G. Radice, R. Maggiora, M. Rapoport, D. Faccone, A. Di Martino, and M. Galas. 2008. Klebsiella pneumoniae carbapenemase-2, Buenos Aires, Argentina. Emerg. Infect. Dis. 14:1178-1180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Pérez-Pérez, F. J., and N. D. Hanson. 2002. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40:2153-2162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 252.Petrella, S., D. Clermont, I. Casin, V. Jarlier, and W. Sougakoff. 2001. Novel class A β-lactamase Sed-1 from Citrobacter sedlakii: genetic diversity of β-lactamases within the Citrobacter genus. Antimicrob. Agents Chemother. 45:2287-2298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253.Pfaller, M. A., R. N. Jones, S. A. Marshall, S. L. Coffman, R. J. Hollis, M. B. Edmond, and R. P. Wenzel. 1997. Inducible ampC β-lactamase producing gram-negative bacilli from blood stream infections: frequency, antimicrobial susceptibility, and molecular epidemiology in a national surveillance program (SCOPE). Diagn. Microbiol. Infect. Dis. 28:211-219. [DOI] [PubMed] [Google Scholar]
  • 254.Philippon, A., G. Arlet, and G. A. Jacoby. 2002. Plasmid-determined AmpC-type β-lactamases. Antimicrob. Agents Chemother. 46:1-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 255.Pichardo, C., M. del Carmen Conejo, M. Bernabéu-Wittel, A. Pascual, M. E. Jiménez-Mejías, M. de Cueto, M. E. Pachón-Ibáñez, I. García, J. Pachón, and L. Martínez-Martínez. 2005. Activity of cefepime and carbapenems in experimental pneumonia caused by porin-deficient Klebsiella pneumoniae producing FOX-5 β-lactamase. Clin. Microbiol. Infect. 11:31-38. [DOI] [PubMed] [Google Scholar]
  • 256.Pichardo, C., J. M. Rodríguez-Martínez, M. E. Pachón-Ibañez, C. Conejo, J. Ibáñez-Martínez, L. Martínez-Martínez, J. Pachón, and A. Pascual. 2005. Efficacy of cefepime and imipenem in experimental murine pneumonia caused by porin-deficient Klebsiella pneumoniae producing CMY-2 β-lactamase. Antimicrob. Agents Chemother. 49:3311-3316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257.Pitout, J. D., D. B. Gregson, D. L. Church, and K. B. Laupland. 2007. Population-based laboratory surveillance for AmpC β-lactamase-producing Escherichia coli, Calgary. Emerg. Infect. Dis. 13:443-448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 258.Pitout, J. D., E. S. Moland, C. C. Sanders, K. S. Thomson, and S. R. Fitzsimmons. 1997. β-Lactamases and detection of β-lactam resistance in Enterobacter spp. Antimicrob. Agents Chemother. 41:35-39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 259.Pitout, J. D., M. D. Reisbig, M. Mulvey, L. Chui, M. Louie, L. Crowe, D. L. Church, S. Elsayed, D. Gregson, R. Ahmed, P. Tilley, and N. D. Hanson. 2003. Association between handling of pet treats and infection with Salmonella enterica serotype Newport expressing the AmpC β-lactamase, CMY-2. J. Clin. Microbiol. 41:4578-4582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260.Poirel, L., M. Guibert, D. Girlich, T. Naas, and P. Nordmann. 1999. Cloning, sequence analyses, expression, and distribution of ampC-ampR from Morganella morganii clinical isolates. Antimicrob. Agents Chemother. 43:769-776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 261.Poirel, L., M. F. Lartigue, J. W. Decousser, and P. Nordmann. 2005. ISEcp1B-mediated transposition of blaCTX-M in Escherichia coli. Antimicrob. Agents Chemother. 49:447-450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 262.Poirel, L., T. Naas, D. Nicolas, L. Collet, S. Bellais, J. D. Cavallo, and P. Nordmann. 2000. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 44:891-897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 263.Potz, N. A., R. Hope, M. Warner, A. P. Johnson, and D. M. Livermore. 2006. Prevalence and mechanisms of cephalosporin resistance in Enterobacteriaceae in London and South-East England. J. Antimicrob. Chemother. 58:320-326. [DOI] [PubMed] [Google Scholar]
  • 264.Power, P., M. Galleni, J. A. Ayala, and G. Gutkind. 2006. Biochemical and molecular characterization of three new variants of AmpC β-lactamases from Morganella morganii. Antimicrob. Agents Chemother. 50:962-967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Powers, R. A., E. Caselli, P. J. Focia, F. Prati, and B. K. Shoichet. 2001. Structures of ceftazidime and its transition-state analogue in complex with AmpC β-lactamase: implications for resistance mutations and inhibitor design. Biochemistry 40:9207-9214. [DOI] [PubMed] [Google Scholar]
  • 266.Preston, K. E., C. C. Radomski, and R. A. Venezia. 2000. Nucleotide sequence of the chromosomal ampC gene of Enterobacter aerogenes Antimicrob. Agents Chemother. 44:3158-3162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 267.Qin, X., D. M. Zerrt, S. J. Weissman, J. A. Englund, D. M. Denno, E. J. Klein, P. I. Tarr, J. Kwong, J. R. Stapp, L. G. Tulloch, and E. Galanakis. 2008. Prevalence and mechanisms of broad-spectrum β-lactam resistance in Enterobacteriaceae: a children's hospital experience. Antimicrob. Agents Chemother. 52:3909-3914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 268.Quale, J., S. Bratu, J. Gupta, and D. Landman. 2006. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 50:1633-1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 269.Queenan, A. M., S. Jenkins, and K. Bush. 2001. Cloning and biochemical characterization of FOX-5, an AmpC-type plasmid-encoded β-lactamase from a New York City Klebsiella pneumoniae clinical isolate. Antimicrob. Agents Chemother. 45:3189-3194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 270.Raimondi, A., A. Traverso, and H. Nikaido. 1991. Imipenem- and meropenem-resistant mutants of Enterobacter cloacae and Proteus rettgeri lack porins. Antimicrob. Agents Chemother. 35:1174-1180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 271.Raskine, L., I. Borrel, G. Barnaud, S. Boyer, B. Hanau-Bercot, J. Gravisse, R. Labia, G. Arlet, and M. J. Sanson-Le-Pors. 2002. Novel plasmid-encoded class C β-lactamase (MOX-2) in Klebsiella pneumoniae from Greece. Antimicrob. Agents Chemother. 46:2262-2265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 272.Rasmussen, B. A., D. Keeney, Y. Yang, and K. Bush. 1994. Cloning and expression of a cloxacillin-hydrolyzing enzyme and a cephalosporinase from Aeromonas sobria AER 14M in Escherichia coli: requirement for an E. coli chromosomal mutation for efficient expression of the class D enzyme. Antimicrob. Agents Chemother. 38:2078-2085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 273.Recchia, G. D., and R. M. Hall. 1995. Gene cassettes: a new class of mobile element. Microbiology 141:3015-3027. [DOI] [PubMed] [Google Scholar]
  • 274.Reisbig, M. D., and N. D. Hanson. 2002. The ACT-1 plasmid-encoded AmpC β-lactamase is inducible: detection in a complex β-lactamase background. J. Antimicrob. Chemother. 49:557-560. [DOI] [PubMed] [Google Scholar]
  • 275.Reisbig, M. D., and N. D. Hanson. 2004. Promoter sequences necessary for high-level expression of the plasmid-associated ampC β-lactamase gene blaMIR-1. Antimicrob. Agents Chemother. 48:4177-4182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 276.Reisbig, M. D., A. Hossain, and N. D. Hanson. 2003. Factors influencing gene expression and resistance for gram-negative organisms expressing plasmid-encoded ampC genes of Enterobacter origin. J. Antimicrob. Chemother. 51:1141-1151. [DOI] [PubMed] [Google Scholar]
  • 277.Robin, F., J. Delmas, M. Archambaud, C. Schweitzer, C. Chanal, and R. Bonnet. 2006. CMT-type β-lactamase TEM-125, an emerging problem for extended-spectrum β-lactamase detection. Antimicrob. Agents Chemother. 50:2403-2408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 278.Rogers, M. B., A. C. Parker, and C. J. Smith. 1993. Cloning and characterization of the endogenous cephalosporinase gene, cepA, from Bacteroides fragilis reveals a new subgroup of Ambler class A β-lactamases. Antimicrob. Agents Chemother. 37:2391-2400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 279.Rottman, M., Y. Benzerara, B. Hanau-Bercot, C. Bizet, A. Philippon, and G. Arlet. 2002. Chromosomal ampC genes in Enterobacter species other than Enterobacter cloacae, and ancestral association of the ACT-1 plasmid-encoded cephalosporinase to Enterobacter asburiae. FEMS Microbiol. Lett. 210:87-92. [DOI] [PubMed] [Google Scholar]
  • 280.Ruppé, E., P. Bidet, C. Verdet, G. Arlet, and E. Bingen. 2006. First detection of the Ambler class C 1 AmpC β-lactamase in Citrobacter freundii by a new, simple double-disk synergy test. J. Clin. Microbiol. 44:4204-4207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 281.Sabath, L. D., M. Jago, and E. P. Abraham. 1965. Cephalosporinase and penicillinase activities of a β-lactamase from Pseudomonas pyocyanea. Biochem. J. 96:739-752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 282.Sader, H. S., R. N. Jones, M. G. Stilwell, M. J. Dowzicky, and T. R. Fritsche. 2005. Tigecycline activity tested against 26,474 bloodstream infection isolates: a collection from 6 continents. Diagn. Microbiol. Infect. Dis. 52:181-186. [DOI] [PubMed] [Google Scholar]
  • 283.Sanders, C. C. 1993. Cefepime: the next generation? Clin. Infect. Dis. 17:369-379. [PubMed] [Google Scholar]
  • 284.Reference deleted.
  • 285.Sanders, C. C., and W. E. Sanders, Jr. 1986. Type I β-lactamases of gram-negative bacteria: interaction with β-lactam antibiotics. J. Infect. Dis. 154:792-800. [DOI] [PubMed] [Google Scholar]
  • 286.Sanders, W. E., Jr., J. H. Tenney, and R. E. Kessler. 1996. Efficacy of cefepime in the treatment of infections due to multiply resistant Enterobacter species. Clin. Infect. Dis. 23:454-461. [DOI] [PubMed] [Google Scholar]
  • 287.Sawai, T., A. Yamaguchi, and K. Tsukamoto. 1988. Amino acid sequence, active-site residue, and effect of suicide inhibitors on cephalosporinase of Citrobacter freundii GN346. Rev. Infect. Dis. 10:721-725. [DOI] [PubMed] [Google Scholar]
  • 288.Schiefer, A. M., I. Wiegand, K. J. Sherwood, B. Wiedemann, and I. Stock. 2005. Biochemical and genetic characterization of the β-lactamases of Y. aldovae, Y. bercovieri, Y. frederiksenii and “Y. ruckeri” strains. Int. J. Antimicrob. Agents 25:496-500. [DOI] [PubMed] [Google Scholar]
  • 289.Schmidtke, A. J., and N. D. Hanson. 2006. Model system to evaluate the effect of ampD mutations on AmpC-mediated β-lactam resistance. Antimicrob. Agents Chemother. 50:2030-2037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 290.Schmidtke, A. J., and N. D. Hanson. 2008. Role of ampD homologs in overproduction of AmpC in clinical isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 52:3922-3927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 291.Schumacher, H., M. Nir, B. Mansa, and A. Grassy. 1992. β-Lactamases in Shigella. APMIS 100:954-956. [PubMed] [Google Scholar]
  • 292.Segal, H., E. C. Nelson, and B. G. Elisha. 2004. Genetic environment and transcription of ampC in an Acinetobacter baumannii clinical isolate. Antimicrob. Agents Chemother. 48:612-614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 293.Seoane, A., M. V. Francia, and J. M. Garcia Lobo. 1992. Nucleotide sequence of the ampC-ampR region from the chromosome of Yersinia enterocolitica. Antimicrob. Agents Chemother. 36:1049-1052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 294.Seoane, A., and J. M. Garcia Lobo. 1991. Cloning of chromosomal β-lactamase genes from Yersinia enterocolitica. J. Gen. Microbiol. 137:141-146. [DOI] [PubMed] [Google Scholar]
  • 295.Shahid, M., A. Malik, M. Agrawal, and S. Singhal. 2004. Phenotypic detection of extended-spectrum and AmpC β-lactamases by a new spot-inoculation method and modified three-dimensional extract test: comparison with the conventional three-dimensional extract test. J. Antimicrob. Chemother. 54:684-687. [DOI] [PubMed] [Google Scholar]
  • 296.Sharma, S., P. Ramnani, and J. S. Virdi. 2004. Detection and assay of β-lactamases in clinical and non-clinical strains of Yersinia enterocolitica biovar 1A. J. Antimicrob. Chemother. 54:401-405. [DOI] [PubMed] [Google Scholar]
  • 297.Siu, L. K., P. L. Lu, J. Y. Chen, F. M. Lin, and S. C. Chang. 2003. High-level expression of ampC β-lactamase due to insertion of nucleotides between −10 and −35 promoter sequences in Escherichia coli clinical isolates: cases not responsive to extended-spectrum-cephalosporin treatment. Antimicrob. Agents Chemother. 47:2138-2144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 298.Smith, C. J., T. K. Bennett, and A. C. Parker. 1994. Molecular and genetic analysis of the Bacteroides uniformis cephalosporinase gene, cblA, encoding the species-specific β-lactamase. Antimicrob. Agents Chemother. 38:1711-1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 299.Sohn, S. G., J. J. Lee, E. S. Sohn, L. W. Kang, and S. H. Lee. 2008. Extension of the hydrolysis spectrum of AmpC β-lactamase of Escherichia coli due to amino acid insertion in the H-10 helix. J. Antimicrob. Chemother. 61:965-966. [DOI] [PubMed] [Google Scholar]
  • 300.Song, W., I. K. Bae, Y. N. Lee, C. H. Lee, S. H. Lee, and S. H. Jeong. 2007. Detection of extended-spectrum β-lactamases by using boronic acid as an AmpC β-lactamase inhibitor in clinical isolates of Klebsiella spp. and Escherichia coli. J. Clin. Microbiol. 45:1180-1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 301.Song, W., S. H. Jeong, J. S. Kim, H. S. Kim, D. H. Shin, K. H. Roh, and K. M. Lee. 2007. Use of boronic acid disk methods to detect the combined expression of plasmid-mediated AmpC β-lactamases and extended-spectrum β-lactamases in clinical isolates of Klebsiella spp., Salmonella spp., and Proteus mirabilis. Diagn. Microbiol. Infect. Dis. 57:315-318. [DOI] [PubMed] [Google Scholar]
  • 302.Stapleton, P., K. Shannon, and I. Phillips. 1995. The ability of β-lactam antibiotics to select mutants with derepressed β-lactamase synthesis from Citrobacter freundii. J. Antimicrob. Chemother. 36:483-496. [DOI] [PubMed] [Google Scholar]
  • 303.Stapleton, P. D., K. P. Shannon, and G. L. French. 1999. Carbapenem resistance in Escherichia coli associated with plasmid-determined CMY-4 β-lactamase production and loss of an outer membrane protein. Antimicrob. Agents Chemother. 43:1206-1210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 304.Steward, C. D., J. K. Rasheed, S. K. Hubert, J. W. Biddle, P. M. Raney, G. J. Anderson, P. P. Williams, K. L. Brittain, A. Oliver, J. E. McGowan, Jr., and F. C. Tenover. 2001. Characterization of clinical isolates of Klebsiella pneumoniae from 19 laboratories using the National Committee for Clinical Laboratory Standards extended-spectrum β-lactamase detection methods. J. Clin. Microbiol. 39:2864-2872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 305.Stock, I. 2005. Natural antimicrobial susceptibility patterns of Kluyvera ascorbata and Kluyvera cryocrescens strains and review of the clinical efficacy of antimicrobial agents used for the treatment of Kluyvera infections. J. Chemother. 17:143-160. [DOI] [PubMed] [Google Scholar]
  • 306.Stock, I., S. Burak, K. J. Sherwood, T. Gruger, and B. Wiedemann. 2003. Natural antimicrobial susceptibilities of strains of ‘unusual’ Serratia species: S. ficaria, S. fonticola, S. odorifera, S. plymuthica and S. rubidaea. J. Antimicrob. Chemother. 51:865-885. [DOI] [PubMed] [Google Scholar]
  • 307.Stock, I., T. Grueger, and B. Wiedemann. 2003. Natural antibiotic susceptibility of strains of Serratia marcescens and the S. liquefaciens complex: S. liquefaciens sensu stricto, S. proteamaculans and S. grimesii. Int. J. Antimicrob. Agents 22:35-47. [DOI] [PubMed] [Google Scholar]
  • 308.Stock, I., T. Grüger, and B. Wiedemann. 2000. Natural antibiotic susceptibility of Rahnella aquatilis and R. aquatilis-related strains. J. Chemother. 12:30-39. [DOI] [PubMed] [Google Scholar]
  • 309.Stock, I., B. Henrichfreise, and B. Wiedemann. 2002. Natural antibiotic susceptibility and biochemical profiles of Yersinia enterocolitica-like strains: Y. bercovieri, Y. mollaretii, Y. aldovae and ‘Y. ruckeri.’ J. Med. Microbiol. 51:56-69. [DOI] [PubMed] [Google Scholar]
  • 310.Stock, I., M. Rahman, K. J. Sherwood, and B. Wiedemann. 2005. Natural antimicrobial susceptibility patterns and biochemical identification of Escherichia albertii and Hafnia alvei strains. Diagn. Microbiol. Infect. Dis. 51:151-163. [DOI] [PubMed] [Google Scholar]
  • 311.Stock, I., K. J. Sherwood, and B. Wiedemann. 2003. Natural antibiotic susceptibility of Ewingella americana strains. J. Chemother. 15:428-441. [DOI] [PubMed] [Google Scholar]
  • 312.Stock, I., and B. Wiedemann. 2001. Natural antibiotic susceptibilities of Edwardsiella tarda, E. ictaluri, and E. hoshinae. Antimicrob. Agents Chemother. 45:2245-2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 313.Stock, I., and B. Wiedemann. 2003. Natural antimicrobial susceptibilities and biochemical profiles of Yersinia enterocolitica-like strains: Y. frederiksenii, Y. intermedia, Y. kristensenii and Y. rohdei. FEMS Immunol. Med. Microbiol. 38:139-152. [DOI] [PubMed] [Google Scholar]
  • 314.Su, L. H., T. L. Wu, J. H. Chia, C. Chu, A. J. Kuo, and C. H. Chiu. 2005. Increasing ceftriaxone resistance in Salmonella isolates from a university hospital in Taiwan. J. Antimicrob. Chemother. 55:846-852. [DOI] [PubMed] [Google Scholar]
  • 315.Tan, T. Y., S. Y. Ng, L. Teo, Y. Koh, and C. H. Teok. 2008. Detection of plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis. J. Clin. Pathol. 61:642-644. [DOI] [PubMed] [Google Scholar]
  • 316.Then, R. L., and P. Angehrn. 1982. Trapping of nonhydrolyzable cephalosporins by cephalosporinases in Enterobacter cloacae and Pseudomonas aeruginosa as a possible resistance mechanism. Antimicrob. Agents Chemother. 21:711-717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 317.Thiolas, A., C. Bollet, B. La Scola, D. Raoult, and J. M. Pagès. 2005. Successive emergence of Enterobacter aerogenes strains resistant to imipenem and colistin in a patient. Antimicrob. Agents Chemother. 49:1354-1358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 318.Thomson, K. S. 2001. Controversies about extended-spectrum and AmpC beta-lactamases. Emerg. Infect. Dis. 7:333-336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 319.Thomson, K. S., and C. C. Sanders. 1992. Detection of extended-spectrum β-lactamases in members of the family Enterobacteriaceae: comparison of the double-disk and three-dimensional tests. Antimicrob. Agents Chemother. 36:1877-1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 320.Thomson, K. S., C. C. Sanders, and J. A. Washington II. 1993. Ceftazidime resistance in Hafnia alvei. Antimicrob. Agents Chemother. 37:1375-1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 321.Tokunaga, H., M. Ishibashi, T. Arakawa, and M. Tokunaga. 2004. Highly efficient renaturation of β-lactamase isolated from moderately halophilic bacteria. FEBS Lett. 558:7-12. [DOI] [PubMed] [Google Scholar]
  • 322.Toleman, M. A., P. M. Bennett, and T. R. Walsh. 2006. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol. Mol. Biol. Rev. 70:296-316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 323.Tracz, D. M., D. A. Boyd, R. Hizon, E. Bryce, A. McGeer, M. Ofner-Agostini, A. E. Simor, S. Paton, and M. R. Mulvey. 2007. ampC gene expression in promoter mutants of cefoxitin-resistant Escherichia coli clinical isolates. FEMS Microbiol. Lett. 270:265-271. [DOI] [PubMed] [Google Scholar]
  • 324.Tsakris, A., I. Kristo, A. Poulou, F. Markou, A. Ikonomidis, and S. Pournaras. 2008. First occurrence of KPC-2-possessing Klebsiella pneumoniae in a Greek hospital and recommendation for detection with boronic acid disc tests. J. Antimicrob. Chemother. 62:1257-1260. [DOI] [PubMed] [Google Scholar]
  • 325.Tzouvelekis, L. S., E. Tzelepi, M. E. Kaufmann, and A. F. Mentis. 1994. Consecutive mutations leading to the emergence in vivo of imipenem resistance in a clinical strain of Enterobacter aerogenes. J. Med. Microbiol. 40:403-407. [DOI] [PubMed] [Google Scholar]
  • 326.Tzouvelekis, L. S., E. Tzelepi, A. F. Mentis, and A. Tsakris. 1993. Identification of a novel plasmid-mediated β-lactamase with chromosomal cephalosporinase characteristics from Klebsiella pneumoniae. J. Antimicrob. Chemother. 31:645-654. [DOI] [PubMed] [Google Scholar]
  • 327.Tzouvelekis, L. S., E. Tzelepi, A. F. Mentis, A. C. Vatopoulos, and A. Tsakris. 1992. Imipenem resistance in Enterobacter aerogenes is associated with derepression of chromosomal cephalosporinases and impaired permeability. FEMS Microbiol. Lett. 74:195-199. [DOI] [PubMed] [Google Scholar]
  • 328.Underwood, S., and M. B. Avison. 2004. Citrobacter koseri and Citrobacter amalonaticus isolates carry highly divergent β-lactamase genes despite having high levels of biochemical similarity and 16S rRNA sequence homology. J. Antimicrob. Chemother. 53:1076-1080. [DOI] [PubMed] [Google Scholar]
  • 329.Vimont, S., D. Aubert, J. X. Mazoit, L. Poirel, and P. Nordmann. 2007. Broad-spectrum β-lactams for treating experimental peritonitis in mice due to Escherichia coli producing plasmid-encoded cephalosporinases. J. Antimicrob. Chemother. 60:1045-1050. [DOI] [PubMed] [Google Scholar]
  • 330.Vu, H., and H. Nikaido. 1985. Role of β-lactam hydrolysis in the mechanism of resistance of a β-lactamase-constitutive Enterobacter cloacae strain to expanded-spectrum β-lactams. Antimicrob. Agents Chemother. 27:393-398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 331.Wachino, J., Y. Doi, K. Yamane, N. Shibata, T. Yagi, T. Kubota, and Y. Arakawa. 2004. Molecular characterization of a cephamycin-hydrolyzing and inhibitor-resistant class A β-lactamase, GES-4, possessing a single G170S substitution in the Ω-loop. Antimicrob. Agents Chemother. 48:2905-2910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 332.Wachino, J., H. Kurokawa, S. Suzuki, K. Yamane, N. Shibata, K. Kimura, Y. Ike, and Y. Arakawa. 2006. Horizontal transfer of blaCMY-bearing plasmids among clinical Escherichia coli and Klebsiella pneumoniae isolates and emergence of cefepime-hydrolyzing CMY-19. Antimicrob. Agents Chemother. 50:534-541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 333.Walsh, T. R., L. Hall, A. P. MacGowan, and P. M. Bennett. 1995. Sequence analysis of two chromosomally mediated inducible β-lactamases from Aeromonas sobria, strain 163a, one a class D penicillinase, the other an AmpC cephalosporinase. J. Antimicrob. Chemother. 36:41-52. [DOI] [PubMed] [Google Scholar]
  • 334.Walsh, T. R., R. A. Stunt, J. A. Nabi, A. P. MacGowan, and P. M. Bennett. 1997. Distribution and expression of β-lactamase genes among Aeromonas spp. J. Antimicrob. Chemother. 40:171-178. [DOI] [PubMed] [Google Scholar]
  • 335.Walther-Rasmussen, J., and N. Høiby. 2002. Plasmid-borne AmpC β-lactamases. Can. J. Microbiol. 48:479-493. [DOI] [PubMed] [Google Scholar]
  • 336.Weber, D. A., and C. C. Sanders. 1990. Diverse potential of β-lactamase inhibitors to induce class I enzymes. Antimicrob. Agents Chemother. 34:156-158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 337.Weng, S. F., Y. F. Chao, and J. W. Lin. 2004. Identification and characteristic analysis of the ampC gene encoding β-lactamase from Vibrio fischeri. Biochem. Biophys. Res. Commun. 314:838-843. [DOI] [PubMed] [Google Scholar]
  • 338.Whichard, J., K. Gay, J. E. Stevenson, K. Joyce, K. Cooper, M. Omondi, M. F., G. A. Jacoby, and T. J. Barrett. 2007. Human Salmonella and concurrent decreased susceptibility to quinolones and extended-spectrum cephalosporins. Emerg. Infect. Dis. 13:1681-1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 339.Whichard, J. M., K. Joyce, P. D. Fey, J. M. Nelson, F. J. Angulo, and T. J. Barrett. 2005. β-Lactam resistance and Enterobacteriaceae, United States. Emerg. Infect. Dis. 11:1464-1466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 340.Winokur, P. L., A. Brueggemann, D. L. DeSalvo, L. Hoffmann, M. D. Apley, E. K. Uhlenhopp, M. A. Pfaller, and G. V. Doern. 2000. Animal and human multidrug-resistant, cephalosporin-resistant Salmonella isolates expressing a plasmid-mediated CMY-2 AmpC β-lactamase. Antimicrob. Agents Chemother. 44:2777-2783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 341.Wong-Beringer, A., J. Hindler, M. Loeloff, A. M. Queenan, N. Lee, D. A. Pegues, J. P. Quinn, and K. Bush. 2002. Molecular correlation for the treatment outcomes in bloodstream infections caused by Escherichia coli and Klebsiella pneumoniae with reduced susceptibility to ceftazidime. Clin. Infect. Dis. 34:135-146. [DOI] [PubMed] [Google Scholar]
  • 342.Woodford, N., S. Reddy, E. J. Fagan, R. L. Hill, K. L. Hopkins, M. E. Kaufmann, J. Kistler, M. F. Palepou, R. Pike, M. E. Ward, J. Cheesbrough, and D. M. Livermore. 2007. Wide geographic spread of diverse acquired AmpC β-lactamases among Escherichia coli and Klebsiella spp. in the UK and Ireland. J. Antimicrob. Chemother. 59:102-105. [DOI] [PubMed] [Google Scholar]
  • 343.Wu, S. W., K. Dornbusch, G. Kronvall, and M. Norgren. 1999. Characterization and nucleotide sequence of a Klebsiella oxytoca cryptic plasmid encoding a CMY-type β-lactamase: confirmation that the plasmid-mediated cephamycinase originated from the Citrobacter freundii AmpC β-lactamase. Antimicrob. Agents Chemother. 43:1350-1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 344.Yagi, T., J. Wachino, H. Kurokawa, S. Suzuki, K. Yamane, Y. Doi, N. Shibata, H. Kato, K. Shibayama, and Y. Arakawa. 2005. Practical methods using boronic acid compounds for identification of class C β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. J. Clin. Microbiol. 43:2551-2558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 345.Yan, J. J., P. R. Hsueh, J. J. Lu, F. Y. Chang, J. M. Shyr, J. H. Wan, Y. C. Liu, Y. C. Chuang, Y. C. Yang, S. M. Tsao, H. H. Wu, L. S. Wang, T. P. Lin, H. M. Wu, H. M. Chen, and J. J. Wu. 2006. Extended-spectrum β-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. Antimicrob. Agents Chemother. 50:1861-1864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 346.Yan, J. J., W. C. Ko, H. M. Wu, S. H. Tsai, C. L. Chuang, and J. J. Wu. 2004. Complexity of Klebsiella pneumoniae isolates resistant to both cephamycins and extended-spectrum cephalosporins at a teaching hospital in Taiwan. J. Clin. Microbiol. 42:5337-5340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 347.Yan, J. J., W. C. Ko, J. J. Wu, S. H. Tsai, and C. L. Chuang. 2004. Epidemiological investigation of bloodstream infections by extended spectrum cephalosporin-resistant Escherichia coli in a Taiwanese teaching hospital. J. Clin. Microbiol. 42:3329-3332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 348.Yatsuyanagi, J., S. Saito, T. Konno, S. Harata, N. Suzuki, J. Kato, and K. Amano. 2006. Nosocomial outbreak of ceftazidime-resistant Serratia marcescens strains that produce a chromosomal AmpC variant with N235K substitution. Jpn. J. Infect. Dis. 59:153-159. [PubMed] [Google Scholar]
  • 349.Yigit, H., G. J. Anderson, J. W. Biddle, C. D. Steward, J. K. Rasheed, L. L. Valera, J. E. McGowan, Jr., and F. C. Tenover. 2002. Carbapenem resistance in a clinical isolate of Enterobacter aerogenes is associated with decreased expression of OmpF and OmpC porin analogs. Antimicrob. Agents Chemother. 46:3817-3822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 350.Zanetti, G., F. Bally, G. Greub, J. Garbino, T. Kinge, D. Lew, J. A. Romand, J. Bille, D. Aymon, L. Stratchounski, L. Krawczyk, E. Rubinstein, M. D. Schaller, R. Chiolero, M. P. Glauser, and A. Cometta. 2003. Cefepime versus imipenem-cilastatin for treatment of nosocomial pneumonia in intensive care unit patients: a multicenter, evaluator-blind, prospective, randomized study. Antimicrob. Agents Chemother. 47:3442-3447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 351.Zhu, L. X., Z. W. Zhang, D. Liang, D. Jiang, C. Wang, N. Du, Q. Zhang, K. Mitchelson, and J. Cheng. 2007. Multiplex asymmetric PCR-based oligonucleotide microarray for detection of drug resistance genes containing single mutations in Enterobacteriaceae. Antimicrob. Agents Chemother. 51:3707-3713. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical Microbiology Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES