Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1986 Apr;52(1):76–84. doi: 10.1128/iai.52.1.76-84.1986

Smooth lipopolysaccharide is the major protective antigen for mice in the surface extract from IATS serotype 6 contributing to the polyvalent Pseudomonas aeruginosa vaccine PEV.

S MacIntyre, R Lucken, P Owen
PMCID: PMC262200  PMID: 3082762

Abstract

The nature of the protective antigen in one of the sixteen monovalent extracts (viz., extract-6) contributing to the pseudomonas polyvalent extract vaccine (PEV) was studied in a mouse challenge assay. Selective removal, by filtration through Sep-Pak C18 cartridges, of two major protein antigens with molecular weights of 16,200 and 21,000 had no effect on the protection afforded by extract-6. When analyzed on the basis of 2-keto-3-deoxyoctonate, lipopolysaccharide (LPS) purified by hot phenol extraction (LPS-A) from Pseudomonas aeruginosa (International Antigenic Typing System serotype 6) could account in full for the protective capacity of extract-6. Comparative analysis of LPS heterogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by silver staining indicated that both extract-6 and LPS-A possessed similar spectra of smooth LPS molecules, containing between 10 and approximately equal to 50 O-antigen repeating units. Differences in the profiles of heterogeneity displayed by LPS in LPS-A and extract-6 were restricted to molecular species with short O-antigen chains. Subfractionation of LPS molecules on the basis of number of O-antigen repeating units was achieved by gel filtration in the presence of deoxycholate. Protection experiments performed on the subfractionated species of LPS-A revealed a relationship between O-antigen chain length and protective capacity; molecules with over 18 O-antigen repeating units being 50 to 100 times more protective than those with zero-two repeating units. The results indicate that most of the protection afforded by LPS-A and extract-6 can be accounted for by LPS molecules possessing extended (10 or more) O-antigen repeating units.

Full text

PDF
76

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. Bartell P. F. Determinants of the biologic activity of surface slime in experimental Pseudomonas aeruginosa infections. Rev Infect Dis. 1983 Nov-Dec;5 (Suppl 5):S971–S978. doi: 10.1093/clinids/5.supplement_5.s971. [DOI] [PubMed] [Google Scholar]
  3. Bodey G. P., Bolivar R., Fainstein V., Jadeja L. Infections caused by Pseudomonas aeruginosa. Rev Infect Dis. 1983 Mar-Apr;5(2):279–313. doi: 10.1093/clinids/5.2.279. [DOI] [PubMed] [Google Scholar]
  4. Buckley J. T., Halasa L. N., MacIntyre S. Purification and partial characterization of a bacterial phospholipid: cholesterol acyltransferase. J Biol Chem. 1982 Mar 25;257(6):3320–3325. [PubMed] [Google Scholar]
  5. Collins M. S., Roby R. E. Protective activity of an intravenous immune globulin (human) enriched in antibody against lipopolysaccharide antigens of Pseudomonas aeruginosa. Am J Med. 1984 Mar 30;76(3A):168–174. doi: 10.1016/0002-9343(84)90337-1. [DOI] [PubMed] [Google Scholar]
  6. Condon C., Cammack R., Patil D. S., Owen P. The succinate dehydrogenase of Escherichia coli. Immunochemical resolution and biophysical characterization of a 4-subunit enzyme complex. J Biol Chem. 1985 Aug 5;260(16):9427–9434. [PubMed] [Google Scholar]
  7. Cryz S. J., Jr, Fürer E., Germanier R. Protection against Pseudomonas aeruginosa infection in a murine burn wound sepsis model by passive transfer of antitoxin A, antielastase, and antilipopolysaccharide. Infect Immun. 1983 Mar;39(3):1072–1079. doi: 10.1128/iai.39.3.1072-1079.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cryz S. J., Jr, Fürer E., Germanier R. Protection against fatal Pseudomonas aeruginosa burn wound sepsis by immunization with lipopolysaccharide and high-molecular-weight polysaccharide. Infect Immun. 1984 Mar;43(3):795–799. doi: 10.1128/iai.43.3.795-799.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cryz S. J., Jr, Meadow P. M., Fürer E., Germanier R. Protection against fatal Pseudomonas aeruginosa sepsis by immunization with smooth and rough lipopolysaccharides. Eur J Clin Microbiol. 1985 Apr;4(2):180–185. doi: 10.1007/BF02013594. [DOI] [PubMed] [Google Scholar]
  10. Darveau R. P., Hancock R. E. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol. 1983 Aug;155(2):831–838. doi: 10.1128/jb.155.2.831-838.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dimitracopoulos G., Bartell P. F. Slime glycolipoproteins and the pathogenicity of various strains of Pseudomonas aeruginosa in experimental infection. Infect Immun. 1980 Nov;30(2):402–408. doi: 10.1128/iai.30.2.402-408.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dubray G., Bezard G. A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 15;119(2):325–329. doi: 10.1016/0003-2697(82)90593-0. [DOI] [PubMed] [Google Scholar]
  13. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
  14. Gilleland H. E., Jr, Parker M. G., Matthews J. M., Berg R. D. Use of a purified outer membrane protein F (porin) preparation of Pseudomonas aeruginosa as a protective vaccine in mice. Infect Immun. 1984 Apr;44(1):49–54. doi: 10.1128/iai.44.1.49-54.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gmeiner J., Martin H. H. Phospholipid and lipopolysaccharide in Proteus mirabilis and its stable protoplast L-form. Difference in content and fatty acid composition. Eur J Biochem. 1976 Aug 16;67(2):487–494. doi: 10.1111/j.1432-1033.1976.tb10714.x. [DOI] [PubMed] [Google Scholar]
  16. Goldman R. C., Leive L. Heterogeneity of antigenic-side-chain length in lipopolysaccharide from Escherichia coli 0111 and Salmonella typhimurium LT2. Eur J Biochem. 1980;107(1):145–153. doi: 10.1111/j.1432-1033.1980.tb04635.x. [DOI] [PubMed] [Google Scholar]
  17. Hancock R. E., Carey A. M. Outer membrane of Pseudomonas aeruginosa: heat- 2-mercaptoethanol-modifiable proteins. J Bacteriol. 1979 Dec;140(3):902–910. doi: 10.1128/jb.140.3.902-910.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hancock R. E., Mutharia L. M., Mouat E. C. Immunotherapeutic potential of monoclonal antibodies against Pseudomonas aeruginosa protein F. Eur J Clin Microbiol. 1985 Apr;4(2):224–227. doi: 10.1007/BF02013602. [DOI] [PubMed] [Google Scholar]
  19. Hedstrom R. C., Pavlovskis O. R., Galloway D. R. Antibody response of infected mice to outer membrane proteins of Pseudomonas aeruginosa. Infect Immun. 1984 Jan;43(1):49–53. doi: 10.1128/iai.43.1.49-53.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Holder I. A., Wheeler R., Montie T. C. Flagellar preparations from Pseudomonas aeruginosa: animal protection studies. Infect Immun. 1982 Jan;35(1):276–280. doi: 10.1128/iai.35.1.276-280.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jones R. J. Antibody responses of burned patients immunized with a polyvalent Pseudomonas vaccine. J Hyg (Lond) 1979 Jun;82(3):453–462. doi: 10.1017/s0022172400053973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones R. J., Roe E. A., Lowbury E. J., Miler J. J., Spilsbury J. F. A new Pseudomonas vaccine: preliminary trial on human volunteers. J Hyg (Lond) 1976 Jun;76(3):429–439. doi: 10.1017/s0022172400055364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Karkhanis Y. D., Zeltner J. Y., Jackson J. J., Carlo D. J. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of Gram-negative bacteria. Anal Biochem. 1978 Apr;85(2):595–601. doi: 10.1016/0003-2697(78)90260-9. [DOI] [PubMed] [Google Scholar]
  24. Knirel Y. A., Shashkov A. S., Dmitriev B. A., Kochetkov N. K. Structural studies of the Pseudomonas aeruginosa immunotype 1 antigen, containing the new sugar constituents 2-acetamido-2-deoxy-D-galacturonamide and 2-deoxy-2-formamido-D-galacturonic acid. Carbohydr Res. 1984 Oct 15;133(2):C12–C14. doi: 10.1016/0008-6215(84)85215-5. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. MacIntyre S., McVeigh T., Owen P. Immunochemical and biochemical analysis of the polyvalent Pseudomonas aeruginosa vaccine PEV. Infect Immun. 1986 Feb;51(2):675–686. doi: 10.1128/iai.51.2.675-686.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  28. McManus A. T., Mason A. D., Jr, McManus W. F., Pruitt B. A., Jr Twenty-five year review of Pseudomonas aeruginosa bacteremia in a burn center. Eur J Clin Microbiol. 1985 Apr;4(2):219–223. doi: 10.1007/BF02013601. [DOI] [PubMed] [Google Scholar]
  29. Miler J. M., Spilsbury J. F., Jones R. J., Roe E. A., Lowbury E. J. A new polyvalent Pseudomonas vaccine. J Med Microbiol. 1977 Feb;10(1):19–27. doi: 10.1099/00222615-10-1-19. [DOI] [PubMed] [Google Scholar]
  30. Mintz C. S., Apicella M. A., Morse S. A. Electrophoretic and serological characterization of the lipopolysaccharide produced by Neisseria gonorrhoeae. J Infect Dis. 1984 Apr;149(4):544–552. doi: 10.1093/infdis/149.4.544. [DOI] [PubMed] [Google Scholar]
  31. Morris D. L. Quantitative Determination of Carbohydrates With Dreywood's Anthrone Reagent. Science. 1948 Mar 5;107(2775):254–255. doi: 10.1126/science.107.2775.254. [DOI] [PubMed] [Google Scholar]
  32. Mutharia L. M., Nicas T. I., Hancock R. E. Outer membrane proteins of Pseudomonas aeruginosa serotype strains. J Infect Dis. 1982 Dec;146(6):770–779. doi: 10.1093/infdis/146.6.770. [DOI] [PubMed] [Google Scholar]
  33. Palva E. T., Mäkelä P. H. Lipopolysaccharide heterogeneity in Salmonella typhimurium analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Eur J Biochem. 1980;107(1):137–143. doi: 10.1111/j.1432-1033.1980.tb04634.x. [DOI] [PubMed] [Google Scholar]
  34. Pier G. B., Cohen M., Jennings H. Further purification and characterization of high-molecular-weight polysaccharide from Pseudomonas aeruginosa. Infect Immun. 1983 Dec;42(3):936–941. doi: 10.1128/iai.42.3.936-941.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pier G. B. Immunochemistry of Pseudomonas aeruginosa lipopolysaccharides and high-molecular-weight polysaccharides. Rev Infect Dis. 1983 Nov-Dec;5 (Suppl 5):S950–S956. doi: 10.1093/clinids/5.supplement_5.s950. [DOI] [PubMed] [Google Scholar]
  36. Pier G. B., Pollack M., Cohen M. Immunochemical characterization of high-molecular-weight polysaccharide from Fisher immunotype 3 Pseudomonas aeruginosa. Infect Immun. 1984 Aug;45(2):309–313. doi: 10.1128/iai.45.2.309-313.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pier G. B., Sidberry H. F., Sadoff J. C. High-molecular-weight polysaccharide antigen from Pseudomonas aeruginosa immunotype 2. Infect Immun. 1981 Nov;34(2):461–468. doi: 10.1128/iai.34.2.461-468.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pollack M., Pier G. B., Prescott R. K. Immunization with Pseudomonas aeruginosa high-molecular-weight polysaccharides prevents death from Pseudomonas burn infections in mice. Infect Immun. 1984 Feb;43(2):759–760. doi: 10.1128/iai.43.2.759-760.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Roe E. A., Jones R. J. Immunization of burned patients against Pseudomonas aeruginosa infection at Safdarjang Hospital, New Delhi. Rev Infect Dis. 1983 Nov-Dec;5 (Suppl 5):S922–S930. doi: 10.1093/clinids/5.supplement_5.s922. [DOI] [PubMed] [Google Scholar]
  40. Rowe P. S., Meadow P. M. Structure of the Core oligosaccharide from the lipopolysaccharide of Pseudomonas aeruginosa PAC1R and its defective mutants. Eur J Biochem. 1983 May 2;132(2):329–337. doi: 10.1111/j.1432-1033.1983.tb07366.x. [DOI] [PubMed] [Google Scholar]
  41. Sawada S., Suzuki M., Kawamura T., Fujinaga S., Masuho Y., Tomibe K. Protection against infection with Pseudomonas aeruginosa by passive transfer of monoclonal antibodies to lipopolysaccharides and outer membrane proteins. J Infect Dis. 1984 Oct;150(4):570–576. doi: 10.1093/infdis/150.4.570. [DOI] [PubMed] [Google Scholar]
  42. Shands J. W., Jr, Chun P. W. The dispersion of gram-negative lipopolysaccharide by deoxycholate. Subunit molecular weight. J Biol Chem. 1980 Feb 10;255(3):1221–1226. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES