Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1986 Apr;52(1):200–204. doi: 10.1128/iai.52.1.200-204.1986

Increased susceptibility to lethal Candida infections in burned mice preinfected with Pseudomonas aeruginosa or pretreated with proteolytic enzymes.

A N Neely, E J Law, I A Holder
PMCID: PMC262219  PMID: 2420722

Abstract

Lethal Candida infections in burn patients are frequently preceded by or occur concomitantly with bacterial infections, which are often due to Pseudomonas aeruginosa. In this study, we developed a burned, mixed-challenge mouse model, which was designed to determine whether and how a recent bacterial infection could influence the development of subsequent candidosis. In this model, burned mice that were preinfected with a sublethal challenge of elastase-producing P. aeruginosa strain WR-5 and then sublethally challenged with Candida albicans exhibited a mortality rate of 60%, while unburned mice challenged in the same way and burned mice that received only one challenge organism exhibited mortality rates of less than 10%. Quantitative microbial counts performed with the kidneys, livers, and eschars of burned mice challenged with both organisms indicated that the deaths were due to Candida infection. Substitution of an elastase-negative P. aeruginosa strain for strain WR-5 in the model resulted in significantly lower mortality rates and lower microbial numbers in the organs. When the Pseudomonas enzyme elastase was substituted for the elastase-positive bacteria in the model, both the mortality rates and the organ counts were comparable to the values found after preinfection with strain WR-5. Another protease, thermolysin, was substituted for the elastase and produced similar mortality results. When the protease inhibitor alpha 2-macroglobulin was given to burned mice infected with the two organisms, it prevented the deaths due to Candida infection. We concluded that this model is one way to study bacterial-fungal infections in burned mice, that recent Pseudomonas infections could predispose burned mice to fatal candidosis, and that the proteolytic activity generated by the bacteria was primarily responsible for the establishment of lethal fungal infections.

Full text

PDF
200

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altemeier W. A., Hummel R. P., Hill E. O., Lewis S. Changing patterns in surgical infections. Ann Surg. 1973 Oct;178(4):436–445. doi: 10.1097/00000658-197310000-00006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernhardt H. E., Orlando J. C., Benfield J. R., Hirose F. M., Foos R. Y. Disseminated candidiasis in surgical patients. Surg Gynecol Obstet. 1972 May;134(5):819–825. [PubMed] [Google Scholar]
  3. Bruck H. M., Nash G., Stein J. M., Lindberg R. B. Studies on the occurrence and significance of yeasts and fungi in the burn wound. Ann Surg. 1972 Jul;176(1):108–110. doi: 10.1097/00000658-197207000-00019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carlson E. Enhancement by Candida albicans of Staphylococcus aureus, Serratia marcescens, and Streptococcus faecalis in the establishment of infection in mice. Infect Immun. 1983 Jan;39(1):193–197. doi: 10.1128/iai.39.1.193-197.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carlson E. Synergistic effect of Candida albicans and Staphylococcus aureus on mouse mortality. Infect Immun. 1982 Dec;38(3):921–924. doi: 10.1128/iai.38.3.921-924.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cicmanec J. F., Holder I. A. Growth of Pseudomonas aeruginosa in normal and burned skin extract: role of extracellular proteases. Infect Immun. 1979 Aug;25(2):477–483. doi: 10.1128/iai.25.2.477-483.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dyess D. L., Garrison R. N., Fry D. E. Candida sepsis. Implications of polymicrobial blood-borne infection. Arch Surg. 1985 Mar;120(3):345–348. doi: 10.1001/archsurg.1985.01390270083014. [DOI] [PubMed] [Google Scholar]
  8. GALE D., SANDOVAL B. Response of mice to the inoculations of both Candida albicans and Escherichia coli. I. The enhancement phenomenon. J Bacteriol. 1957 May;73(5):616–624. doi: 10.1128/jb.73.5.616-624.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gauto A., Law E. J., Holder I. A., MacMillan B. G. Experience with amphotericin-B in the treatment of systmeic candidiasis in burn patients. Am J Surg. 1977 Feb;133(2):174–178. doi: 10.1016/0002-9610(77)90074-5. [DOI] [PubMed] [Google Scholar]
  10. Gottlieb M. S., Schroff R., Schanker H. M., Weisman J. D., Fan P. T., Wolf R. A., Saxon A. Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med. 1981 Dec 10;305(24):1425–1431. doi: 10.1056/NEJM198112103052401. [DOI] [PubMed] [Google Scholar]
  11. Holder I. A., Jogan M. Enhanced survival in burned mice treated with antiserum prepared against normal and burned skin. J Trauma. 1971 Dec;11(12):1041–1046. doi: 10.1097/00005373-197112000-00008. [DOI] [PubMed] [Google Scholar]
  12. Holder I. A., Wheeler R. Experimental studies of the pathogenesis of infections owing to Pseudomonas aeruginosa: elastase, an IgG protease. Can J Microbiol. 1984 Sep;30(9):1118–1124. doi: 10.1139/m84-175. [DOI] [PubMed] [Google Scholar]
  13. Kharazmi A., Döring G., Høiby N., Valerius N. H. Interaction of Pseudomonas aeruginosa alkaline protease and elastase with human polymorphonuclear leukocytes in vitro. Infect Immun. 1984 Jan;43(1):161–165. doi: 10.1128/iai.43.1.161-165.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Law E. J., Kim O. J., Stieritz D. D., MacMillan B. G. Experience with systemic candidiasis in the burned patient. J Trauma. 1972 Jul;12(7):543–552. doi: 10.1097/00005373-197207000-00001. [DOI] [PubMed] [Google Scholar]
  15. Law E. J., Lee K. L., Tewari R. P. Enhanced susceptibility of burned mice to experimental infection with Candida albicans. Mykosen. 1984 Nov;27(11):562–572. doi: 10.1111/j.1439-0507.1984.tb01989.x. [DOI] [PubMed] [Google Scholar]
  16. MANKIEWICZ E., LIVAK M. Effect of Candida albicans on the evolution of experimental tuberculosis. Nature. 1960 Jul 16;187:250–251. doi: 10.1038/187250a0. [DOI] [PubMed] [Google Scholar]
  17. MCRIPLEY R. J., GARRISON D. W. INCREASED SUSCEPTIBILITY OF BURNED RATS TO PSEUDOMONAS AERUGINOSA. Proc Soc Exp Biol Med. 1964 Feb;115:336–338. doi: 10.3181/00379727-115-28906. [DOI] [PubMed] [Google Scholar]
  18. MORIHARA K., TSUZUKI H., OKA T., INOUE H., EBATA M. PSEUDOMONAS AERUGINOSA ELASTASE. ISOLATION, CRYSTALLIZATION, AND PRELIMINARY CHARACTERIZATION. J Biol Chem. 1965 Aug;240:3295–3304. [PubMed] [Google Scholar]
  19. Macdonald F., Odds F. C. Virulence for mice of a proteinase-secreting strain of Candida albicans and a proteinase-deficient mutant. J Gen Microbiol. 1983 Feb;129(2):431–438. doi: 10.1099/00221287-129-2-431. [DOI] [PubMed] [Google Scholar]
  20. Maksymiuk A. W., Thongprasert S., Hopfer R., Luna M., Fainstein V., Bodey G. P. Systemic candidiasis in cancer patients. Am J Med. 1984 Oct 30;77(4D):20–27. [PubMed] [Google Scholar]
  21. Roselle G. A., Watanakunakorn C. Polymicrobial bacteremia. JAMA. 1979 Nov 30;242(22):2411–2413. [PubMed] [Google Scholar]
  22. Rüchel R. A variety of Candida proteinases and their possible targets of proteolytic attack in the host. Zentralbl Bakteriol Mikrobiol Hyg A. 1984 Jul;257(2):266–274. [PubMed] [Google Scholar]
  23. Schultz D. R., Miller K. D. Elastase of Pseudomonas aeruginosa: inactivation of complement components and complement-derived chemotactic and phagocytic factors. Infect Immun. 1974 Jul;10(1):128–135. doi: 10.1128/iai.10.1.128-135.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Seelig M. S. The role of antibiotics in the pathogenesis of Candidainfections. Am J Med. 1966 Jun;40(6):887–917. doi: 10.1016/0002-9343(66)90204-x. [DOI] [PubMed] [Google Scholar]
  25. Snell K., Holder I. A., Leppla S. A., Saelinger C. B. Role of exotoxin and protease as possible virulence factors in experimental infections with Pseudomonas aeruginosa. Infect Immun. 1978 Mar;19(3):839–845. doi: 10.1128/iai.19.3.839-845.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Spebar M. J., Pruitt B. A., Jr Candidiasis in the burned patient. J Trauma. 1981 Mar;21(3):237–239. doi: 10.1097/00005373-198103000-00007. [DOI] [PubMed] [Google Scholar]
  27. Staib F. Proteolysis and pathogenicity of Candida albicans strains. Mycopathol Mycol Appl. 1969 May 28;37(4):345–348. doi: 10.1007/BF02129881. [DOI] [PubMed] [Google Scholar]
  28. Stieritz D. D., Holder I. A. Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: description of a burned mouse model. J Infect Dis. 1975 Jun;131(6):688–691. doi: 10.1093/infdis/131.6.688. [DOI] [PubMed] [Google Scholar]
  29. Stone H. H., Kolb L. D., Currie C. A., Geheber C. E., Cuzzell J. Z. Candida sepsis: pathogenesis and principles of treatments. Ann Surg. 1974 May;179(5):697–711. doi: 10.1097/00000658-197405000-00024. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES