Abstract
Despite the clinical diversity of sickle cell anemia (HbSS) this autosomal recessive disorder, often characterized by a 6- to 20-fold increase in destruction rates of the red blood cells (RBC) without a corresponding increase in synthesis, is essentially a chronic hypermetabolic condition. The stress of HbSS produces caloric inefficiency and a marked increase in resting metabolic rate. Nitrogen metabolism is set at a higher than normal dietary intake, and data are still incomplete regarding the possibility that this genetic disorder may have special amino acid requirements. The physiologic needs for most vitamins and essential mineral elements are increased because of the elevated dietary requirements for energy and nitrogen. Many of these micronutrients, especially α-tocopherol, ascorbic acid, retinol, zinc, and selenium, are free radical scavengers, and thus play crucial roles in retarding premature aging of RBCs caused by peroxidation of the membrane. Evaluation of the dietary requirements of the HbSS victim must also take into account the variable, often age-related, increase in nutrient losses after functional impairment in organs, such as the kidneys, which are usually elicited by repeated vaso-occlusive insults.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alleyne G. A. The kidney in sickle cell anemia. Kidney Int. 1975 Jun;7(6):371–379. doi: 10.1038/ki.1975.54. [DOI] [PubMed] [Google Scholar]
- Bensinger T. A., Gillette P. N. Hemolysis in sickle cell disease. Arch Intern Med. 1974 Apr;133(4):624–631. [PubMed] [Google Scholar]
- Blaxter K. L. Methods of measuring the energy metabolism of animals and interpretation of results obtained. Fed Proc. 1971 Jul-Aug;30(4):1436–1443. [PubMed] [Google Scholar]
- CROSBY W. H. The metabolism of hemoglobin and bile pigment in hemolytic disease. Am J Med. 1955 Jan;18(1):112–122. doi: 10.1016/0002-9343(55)90208-4. [DOI] [PubMed] [Google Scholar]
- CUSWORTH D. C., DENT C. E. Renal clearances of amino acids in normal adults and in patients with aminoaciduria. Biochem J. 1960 Mar;74:550–561. doi: 10.1042/bj0740550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiu D., Lubin B. Abnormal vitamin E and glutathione peroxidase levels in sickle cell anemia: evidence for increased susceptibility to lipid peroxidation in vivo. J Lab Clin Med. 1979 Oct;94(4):542–548. [PubMed] [Google Scholar]
- Cho E. S., Anderson H. L., Wixom R. L., Hanson K. C., Krause G. F. Long-term effects of low histidine intake on men. J Nutr. 1984 Feb;114(2):369–384. doi: 10.1093/jn/114.2.369. [DOI] [PubMed] [Google Scholar]
- Das S. K., Nair R. C. Superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation of normal and sickled erythrocytes. Br J Haematol. 1980 Jan;44(1):87–92. doi: 10.1111/j.1365-2141.1980.tb01186.x. [DOI] [PubMed] [Google Scholar]
- ERLANDSON M. E., SCHULMAN I., SMITH C. H. Studies on congenital hemolytic syndromes. III. Rates of destruction and production of erythrocytes in sickle cell anemia. Pediatrics. 1960 Apr;25:629–644. [PubMed] [Google Scholar]
- Evered D. F. Species differences in amino acid excretion by mammals. Comp Biochem Physiol. 1967 Oct;23(1):163–171. doi: 10.1016/0010-406x(67)90484-7. [DOI] [PubMed] [Google Scholar]
- Golden M. H., Ramdath D. Free radicals in the pathogenesis of kwashiorkor. Proc Nutr Soc. 1987 Feb;46(1):53–68. doi: 10.1079/pns19870008. [DOI] [PubMed] [Google Scholar]
- Harper A. E. The recommended dietary allowances for ascorbic acid. Ann N Y Acad Sci. 1975 Sep 30;258:491–497. doi: 10.1111/j.1749-6632.1975.tb29307.x. [DOI] [PubMed] [Google Scholar]
- Hebbel R. P., Miller W. J. Phagocytosis of sickle erythrocytes: immunologic and oxidative determinants of hemolytic anemia. Blood. 1984 Sep;64(3):733–741. [PubMed] [Google Scholar]
- Hegsted D. M. Energy needs and energy utilization. Nutr Rev. 1974 Feb;32(2):33–38. doi: 10.1111/j.1753-4887.1974.tb06258.x. [DOI] [PubMed] [Google Scholar]
- Henkin R. I. New aspects in the control of food intake and appetite. Ann N Y Acad Sci. 1977 Nov 30;300:321–334. doi: 10.1111/j.1749-6632.1977.tb19332.x. [DOI] [PubMed] [Google Scholar]
- Hsu J. M., Rubenstein B. Effect of zinc deficiency on histidine metabolism in rats. J Nutr. 1982 Mar;112(3):461–467. doi: 10.1093/jn/112.3.461. [DOI] [PubMed] [Google Scholar]
- Hunt T. Control of globin synthesis. Br Med Bull. 1976 Sep;32(3):257–261. doi: 10.1093/oxfordjournals.bmb.a071372. [DOI] [PubMed] [Google Scholar]
- Ink S. L., Henderson L. M. Vitamin B6 metabolism. Annu Rev Nutr. 1984;4:455–470. doi: 10.1146/annurev.nu.04.070184.002323. [DOI] [PubMed] [Google Scholar]
- Kay M. M., Bosman G. J., Shapiro S. S., Bendich A., Bassel P. S. Oxidation as a possible mechanism of cellular aging: vitamin E deficiency causes premature aging and IgG binding to erythrocytes. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2463–2467. doi: 10.1073/pnas.83.8.2463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiremidjian-Schumacher L., Stotzky G. Selenium and immune responses. Environ Res. 1987 Apr;42(2):277–303. doi: 10.1016/s0013-9351(87)80194-9. [DOI] [PubMed] [Google Scholar]
- Konotey-Ahulu F. I. The sickle cell diseases. Clinical manifestations including the "sickle crisis". Arch Intern Med. 1974 Apr;133(4):611–619. [PubMed] [Google Scholar]
- Kopple J. D., Swendseid M. E. Evidence that histidine is an essential amino acid in normal and chronically uremic man. J Clin Invest. 1975 May;55(5):881–891. doi: 10.1172/JCI108016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y. K. Folic acid deficiency in sickle cell anaemia. Scand J Haematol. 1975 Mar;14(1):71–79. doi: 10.1111/j.1600-0609.1975.tb00295.x. [DOI] [PubMed] [Google Scholar]
- Nagaraj Rao J., Sur A. M. Iron deficiency in sicle cell disease. Acta Paediatr Scand. 1980 May;69(3):337–340. doi: 10.1111/j.1651-2227.1980.tb07089.x. [DOI] [PubMed] [Google Scholar]
- Natta C. L., Kremzner L. T. Polyamines and membrane proteins in sickle cell disease. Blood Cells. 1982;8(2):273–280. [PubMed] [Google Scholar]
- Natta C. L., Machlin L. J., Brin M. A decrease in irreversibly sickled erythrocytes in sicle cell anemia patients given vitamin E. Am J Clin Nutr. 1980 May;33(5):968–971. doi: 10.1093/ajcn/33.5.968. [DOI] [PubMed] [Google Scholar]
- Natta C. L., Reynolds R. D. Apparent vitamin B6 deficiency in sickle cell anemia. Am J Clin Nutr. 1984 Aug;40(2):235–239. doi: 10.1093/ajcn/40.2.235. [DOI] [PubMed] [Google Scholar]
- Natta C., Machlin L. Plasma levels of tocopherol in sickle cell anemia subjects. Am J Clin Nutr. 1979 Jul;32(7):1359–1362. doi: 10.1093/ajcn/32.7.1359. [DOI] [PubMed] [Google Scholar]
- Odonkor P. O., Addae S. K., Yamamoto S., Apatu R. S. Effect of dietary nitrogen on urinary excretion of non-protein nitrogen in adolescent sickle cell patients. Hum Nutr Clin Nutr. 1984 Jan;38(1):23–29. [PubMed] [Google Scholar]
- Powers H. J., Thurnham D. I. Riboflavin deficiency in man: effects on haemoglobin and reduced glutathione in erythrocytes of different ages. Br J Nutr. 1981 Sep;46(2):257–266. doi: 10.1079/bjn19810031. [DOI] [PubMed] [Google Scholar]
- Sauberlich H. E. Interactions of thiamin, riboflavin, and other B-vitamins. Ann N Y Acad Sci. 1980;355:80–97. doi: 10.1111/j.1749-6632.1980.tb21329.x. [DOI] [PubMed] [Google Scholar]
- Steinberg M. H., Hebbel R. P. Clinical diversity of sickle cell anemia: genetic and cellular modulation of disease severity. Am J Hematol. 1983 Jun;14(4):405–416. doi: 10.1002/ajh.2830140412. [DOI] [PubMed] [Google Scholar]
- Varma R. N., Mankad V. N., Phelps D. D., Jenkins L. D., Suskind R. M. Depressed erythrocyte glutathione reductase activity in sickle cell disease. Am J Clin Nutr. 1983 Dec;38(6):884–887. doi: 10.1093/ajcn/38.6.884. [DOI] [PubMed] [Google Scholar]
- Visek W. J. An update of concepts of essential amino acids. Annu Rev Nutr. 1984;4:137–155. doi: 10.1146/annurev.nu.04.070184.001033. [DOI] [PubMed] [Google Scholar]
- Warth J. A., Prasad A. S., Zwas F., Frank R. N. Abnormal dark adaptation in sickle cell anemia. J Lab Clin Med. 1981 Aug;98(2):189–194. [PubMed] [Google Scholar]
- Washington R., Boggs D. R. Urinary iron in patients with sickle cell anamia. J Lab Clin Med. 1975 Jul;86(1):17–23. [PubMed] [Google Scholar]
- Waterlow J. C. Metabolic adaptation to low intakes of energy and protein. Annu Rev Nutr. 1986;6:495–526. doi: 10.1146/annurev.nu.06.070186.002431. [DOI] [PubMed] [Google Scholar]
- Willson R. L. Vitamin, selenium, zinc and copper interactions in free radical protection against ill-placed iron. Proc Nutr Soc. 1987 Feb;46(1):27–34. doi: 10.1079/pns19870005. [DOI] [PubMed] [Google Scholar]
- Young J. A., Freedman B. S. Renal tubular transport of amino acids. Clin Chem. 1971 Apr;17(4):245–266. [PubMed] [Google Scholar]
- Yunice A. A., King R. W., Jr, Kraikitpanitch S., Haygood C. C., Lindeman R. D. Urinary zinc excretion following infusions of zinc sulfate, cysteine, histidine, or glycine. Am J Physiol. 1978 Jul;235(1):F40–F45. doi: 10.1152/ajprenal.1978.235.1.F40. [DOI] [PubMed] [Google Scholar]
- ZALUSKY R., HERBERT V. Megaloblastic anemia in scurvy with response to 50 microgm. of folic acid daily. N Engl J Med. 1961 Nov 23;265:1033–1038. doi: 10.1056/NEJM196111232652103. [DOI] [PubMed] [Google Scholar]
