Abstract
Human leukocyte antigens (HLAs) are an inherent system of alloantigens, which are the products of genes of the major histocompatibility complex (MHC). These genes span a region of approximately 4 centimorgans on the short arm of human chromosome 6 at band p 21.3 and encode the HLA class I and class II antigens, which play a central role in cell-to-cell interaction in the immune system. These antigens interact with the antigen-specific cell surface receptors of T lymphocytes (TCR) thus causing activation of the lymphocytes and the resulting immune response. Class I antigens restrict cytotoxic T-cell (CD8+) function thus killing viral infected targets, while class II antigens are involved in presentation of exogenous antigens to T-helper cells (CD4+) by antigen presenting cells (APC). The APC processes the antigens, and the immunogenic peptide is then presented at the cell surface along with the MHC molecule for recognition by the TCR. Since the MHC molecules play a central role in regulating the immune response, they may have an important role in controlling resistance and susceptibility to diseases. In this review we have highlighted studies conducted to look for an association between HLA and infectious diseases; such studies have had a variable degree of success because the pathogenesis of different diseases varies widely, and most diseases have a polygenic etiology.
Full Text
The Full Text of this article is available as a PDF (44.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Assaad-Khalil S. H., Helmy M. A., Zaki A., Mikhail M. M., el-Hai M. A., el-Sawy M. Some genetic, clinical and immunologic interrelations in schistosomiasis mansoni. Ann Biol Clin (Paris) 1993;51(6):619–626. [PubMed] [Google Scholar]
- Assaad-Khalil S. H., Helmy M. A., Zaki A., Mikhail M. M., el-Hai M. A., el-Sawy M. Some genetic, clinical and immunologic interrelations in schistosomiasis mansoni. Ann Biol Clin (Paris) 1993;51(6):619–626. [PubMed] [Google Scholar]
- Beasley R. P., Hwang L. Y., Lin C. C., Chien C. S. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet. 1981 Nov 21;2(8256):1129–1133. doi: 10.1016/s0140-6736(81)90585-7. [DOI] [PubMed] [Google Scholar]
- Becker Y. Computer simulations to predict the availability of peptides with known HLA class I motifs generated by proteolysis of dengue fever virus (DFV) type 1 structural and nonstructural proteins in infected cells. Virus Genes. 1995;10(3):195–203. doi: 10.1007/BF01701808. [DOI] [PubMed] [Google Scholar]
- Becker Y. Dengue fever virus and Japanese encephalitis virus synthetic peptides, with motifs to fit HLA class I haplotypes prevalent in human populations in endemic regions, can be used for application to skin Langerhans cells to prime antiviral CD8+ cytotoxic T cells (CTLs)--a novel approach to the protection of humans. Virus Genes. 1994 Sep;9(1):33–45. doi: 10.1007/BF01703433. [DOI] [PubMed] [Google Scholar]
- Bisset L. R. Molecular mimicry in the pathogenesis of AIDS: the HIV/MHC/mycoplasma triangle. Med Hypotheses. 1994 Dec;43(6):388–396. doi: 10.1016/0306-9877(94)90014-0. [DOI] [PubMed] [Google Scholar]
- Bjork R. L., Jr HIV-1: seven facets of functional molecular mimicry. Immunol Lett. 1991 May;28(2):91–99. doi: 10.1016/0165-2478(91)90104-i. [DOI] [PubMed] [Google Scholar]
- Brown A. E., Chandanayingyong D., Fuggle S. V., Webster H. K. Immune responses to the circumsporozoite protein of Plasmodium falciparum in relation to HLA-DR type. Tissue Antigens. 1989 Sep;34(3):200–204. doi: 10.1111/j.1399-0039.1989.tb01737.x. [DOI] [PubMed] [Google Scholar]
- Brown J. H., Jardetzky T. S., Gorga J. C., Stern L. J., Urban R. G., Strominger J. L., Wiley D. C. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 1993 Jul 1;364(6432):33–39. doi: 10.1038/364033a0. [DOI] [PubMed] [Google Scholar]
- Chen D. S. From hepatitis to hepatoma: lessons from type B viral hepatitis. Science. 1993 Oct 15;262(5132):369–370. doi: 10.1126/science.8211155. [DOI] [PubMed] [Google Scholar]
- Colonna M., Bresnahan M., Bahram S., Strominger J. L., Spies T. Allelic variants of the human putative peptide transporter involved in antigen processing. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3932–3936. doi: 10.1073/pnas.89.9.3932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davenport M. P., Quinn C. L., Chicz R. M., Green B. N., Willis A. C., Lane W. S., Bell J. I., Hill A. V. Naturally processed peptides from two disease-resistance-associated HLA-DR13 alleles show related sequence motifs and the effects of the dimorphism at position 86 of the HLA-DR beta chain. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6567–6571. doi: 10.1073/pnas.92.14.6567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elston R. C. Linkage and association to genetic markers. Exp Clin Immunogenet. 1995;12(3):129–140. doi: 10.1159/000424866. [DOI] [PubMed] [Google Scholar]
- Elvin J., Cerundolo V., Elliott T., Townsend A. A quantitative assay of peptide-dependent class I assembly. Eur J Immunol. 1991 Sep;21(9):2025–2031. doi: 10.1002/eji.1830210909. [DOI] [PubMed] [Google Scholar]
- Faghiri Z., Tabei S. Z., Taheri F. Study of the association of HLA class I antigens with kala-azar. Hum Hered. 1995 Sep-Oct;45(5):258–261. doi: 10.1159/000154309. [DOI] [PubMed] [Google Scholar]
- Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
- Gorodezky C., Flores J., Arevalo N., Castro L. E., Silva A., Rodriguez O. Tuberculoid leprosy in Mexicans is associated with HLA-DR3. Lepr Rev. 1987 Dec;58(4):401–406. doi: 10.5935/0305-7518.19870042. [DOI] [PubMed] [Google Scholar]
- Hill A. V., Allsopp C. E., Kwiatkowski D., Anstey N. M., Twumasi P., Rowe P. A., Bennett S., Brewster D., McMichael A. J., Greenwood B. M. Common west African HLA antigens are associated with protection from severe malaria. Nature. 1991 Aug 15;352(6336):595–600. doi: 10.1038/352595a0. [DOI] [PubMed] [Google Scholar]
- Hill A. V., Elvin J., Willis A. C., Aidoo M., Allsopp C. E., Gotch F. M., Gao X. M., Takiguchi M., Greenwood B. M., Townsend A. R. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature. 1992 Dec 3;360(6403):434–439. doi: 10.1038/360434a0. [DOI] [PubMed] [Google Scholar]
- Hill A., Worth A., Elliott T., Rowland-Jones S., Brooks J., Rickinson A., McMichael A. Characterization of two Epstein-Barr virus epitopes restricted by HLA-B7. Eur J Immunol. 1995 Jan;25(1):18–24. doi: 10.1002/eji.1830250105. [DOI] [PubMed] [Google Scholar]
- Jardetzky T. S., Lane W. S., Robinson R. A., Madden D. R., Wiley D. C. Identification of self peptides bound to purified HLA-B27. Nature. 1991 Sep 26;353(6342):326–329. doi: 10.1038/353326a0. [DOI] [PubMed] [Google Scholar]
- Kamoun M., Zerva L., Sloan S., Zmijewski C., Monos D., Trinchieri G. Induction of HLA class II molecules on human T cells: relationship to immunoregulation and the pathogenesis of AIDS. DNA Cell Biol. 1992 Apr;11(3):265–268. doi: 10.1089/dna.1992.11.265. [DOI] [PubMed] [Google Scholar]
- Kurokohchi K., Akatsuka T., Pendleton C. D., Takamizawa A., Nishioka M., Battegay M., Feinstone S. M., Berzofsky J. A. Use of recombinant protein to identify a motif-negative human cytotoxic T-cell epitope presented by HLA-A2 in the hepatitis C virus NS3 region. J Virol. 1996 Jan;70(1):232–240. doi: 10.1128/jvi.70.1.232-240.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lara M. L., Layrisse Z., Scorza J. V., Garcia E., Stoikow Z., Granados J., Bias W. Immunogenetics of human American cutaneous leishmaniasis. Study of HLA haplotypes in 24 families from Venezuela. Hum Immunol. 1991 Feb;30(2):129–135. doi: 10.1016/0198-8859(91)90081-j. [DOI] [PubMed] [Google Scholar]
- Lee S. P., Morgan S., Skinner J., Thomas W. A., Jones S. R., Sutton J., Khanna R., Whittle H. C., Rickinson A. B. Epstein-Barr virus isolates with the major HLA B35.01-restricted cytotoxic T lymphocyte epitope are prevalent in a highly B35.01-positive African population. Eur J Immunol. 1995 Jan;25(1):102–110. doi: 10.1002/eji.1830250119. [DOI] [PubMed] [Google Scholar]
- Morsy T. A., Romia S. A., al-Ganayni G. A., Abu-Zakham A. A., al-Shazly A. M., Rezk R. A. Histocompatibility (HLA) antigens in Egyptians with two parasitic skin diseases (scabies and leishmaniasis). J Egypt Soc Parasitol. 1990 Dec;20(2):565–572. [PubMed] [Google Scholar]
- Nakamura R. M., Tokunaga T. Strain difference of delayed-type hypersensitivity to BCG and its genetic control in mice. Infect Immun. 1978 Dec;22(3):657–664. doi: 10.1128/iai.22.3.657-664.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potts W. K., Wakeland E. K. The maintenance of MHC polymorphism. Immunol Today. 1990 Feb;11(2):39–40. doi: 10.1016/0167-5699(90)90013-y. [DOI] [PubMed] [Google Scholar]
- Puppo F., Scudeletti M., Indiveri F., Ferrone S. Serum HLA class I antigens: markers and modulators of an immune response? Immunol Today. 1995 Mar;16(3):124–127. doi: 10.1016/0167-5699(95)80127-8. [DOI] [PubMed] [Google Scholar]
- Rajalingam R., Mehra N. K., Jain R. C., Myneedu V. P., Pande J. N. Polymerase chain reaction--based sequence-specific oligonucleotide hybridization analysis of HLA class II antigens in pulmonary tuberculosis: relevance to chemotherapy and disease severity. J Infect Dis. 1996 Mar;173(3):669–676. doi: 10.1093/infdis/173.3.669. [DOI] [PubMed] [Google Scholar]
- Rani R., Fernandez-Vina M. A., Zaheer S. A., Beena K. R., Stastny P. Study of HLA class II alleles by PCR oligotyping in leprosy patients from north India. Tissue Antigens. 1993 Sep;42(3):133–137. doi: 10.1111/j.1399-0039.1993.tb02179.x. [DOI] [PubMed] [Google Scholar]
- Riley E. M., Olerup O., Troye-Blomberg M. The immune recognition of malaria antigens. Parasitol Today. 1991 Jan;7(1):5–11. doi: 10.1016/0169-4758(91)90076-z. [DOI] [PubMed] [Google Scholar]
- Sant A. J., Miller J. MHC class II antigen processing: biology of invariant chain. Curr Opin Immunol. 1994 Feb;6(1):57–63. doi: 10.1016/0952-7915(94)90034-5. [DOI] [PubMed] [Google Scholar]
- Sasazuki T. HLA-linked immune suppression genes. Jinrui Idengaku Zasshi. 1990 Mar;35(1):1–13. doi: 10.1007/BF01883163. [DOI] [PubMed] [Google Scholar]
- Scofield R. H., Kurien B., Gross T., Warren W. L., Harley J. B. HLA-B27 binding of peptide from its own sequence and similar peptides from bacteria: implications for spondyloarthropathies. Lancet. 1995 Jun 17;345(8964):1542–1544. doi: 10.1016/s0140-6736(95)91089-1. [DOI] [PubMed] [Google Scholar]
- Serjeantson S. W. HLA and susceptibility to leprosy. Immunol Rev. 1983;70:89–112. doi: 10.1111/j.1600-065x.1983.tb00711.x. [DOI] [PubMed] [Google Scholar]
- Troye-Blomberg M., Olerup O., Larsson A., Sjöberg K., Perlmann H., Riley E., Lepers J. P., Perlmann P. Failure to detect MHC class II associations of the human immune response induced by repeated malaria infections to the Plasmodium falciparum antigen Pf155/RESA. Int Immunol. 1991 Oct;3(10):1043–1051. doi: 10.1093/intimm/3.10.1043. [DOI] [PubMed] [Google Scholar]
- Tsai S. L., Chen M. H., Yeh C. T., Chu C. M., Lin A. N., Chiou F. H., Chang T. H., Liaw Y. F. Purification and characterization of a naturally processed hepatitis B virus peptide recognized by CD8+ cytotoxic T lymphocytes. J Clin Invest. 1996 Jan 15;97(2):577–584. doi: 10.1172/JCI118450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verjans G. M., Janssen R., UytdeHaag F. G., van Doornik C. E., Tommassen J. Intracellular processing and presentation of T cell epitopes, expressed by recombinant Escherichia coli and Salmonella typhimurium, to human T cells. Eur J Immunol. 1995 Feb;25(2):405–410. doi: 10.1002/eji.1830250215. [DOI] [PubMed] [Google Scholar]
- Wakefield D., Montanaro A., McCluskey P. Acute anterior uveitis and HLA-B27. Surv Ophthalmol. 1991 Nov-Dec;36(3):223–232. doi: 10.1016/0039-6257(91)90005-z. [DOI] [PubMed] [Google Scholar]
- Winchester R., Chen Y., Rose S., Selby J., Borkowsky W. Major histocompatibility complex class II DR alleles DRB1*1501 and those encoding HLA-DR13 are preferentially associated with a diminution in maternally transmitted human immunodeficiency virus 1 infection in different ethnic groups: determination by an automated sequence-based typing method. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12374–12378. doi: 10.1073/pnas.92.26.12374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolf H., Bogedain C., Schwarzmann F. Epstein-Barr virus and its interaction with the host. Intervirology. 1993;35(1-4):26–39. doi: 10.1159/000150293. [DOI] [PubMed] [Google Scholar]
- Xu X. P., Li S. B., Wang C. Y., Li Q. H. Study on the association of HLA with pulmonary tuberculosis. Immunol Invest. 1986 Jun;15(4):327–332. doi: 10.3109/08820138609052951. [DOI] [PubMed] [Google Scholar]
- Yao Z., Maraskovsky E., Spriggs M. K., Cohen J. I., Armitage R. J., Alderson M. R. Herpesvirus saimiri open reading frame 14, a protein encoded by T lymphotropic herpesvirus, binds to MHC class II molecules and stimulates T cell proliferation. J Immunol. 1996 May 1;156(9):3260–3266. [PubMed] [Google Scholar]
- Yonemitsu Y., Nakagawa K., Tanaka S., Mori R., Sugimachi K., Sueishi K. In situ detection of frequent and active infection of human cytomegalovirus in inflammatory abdominal aortic aneurysms: possible pathogenic role in sustained chronic inflammatory reaction. Lab Invest. 1996 Apr;74(4):723–736. [PubMed] [Google Scholar]
- Zeng L., Kurane I., Okamoto Y., Ennis F. A., Brinton M. A. Identification of amino acids involved in recognition by dengue virus NS3-specific, HLA-DR15-restricted cytotoxic CD4+ T-cell clones. J Virol. 1996 May;70(5):3108–3117. doi: 10.1128/jvi.70.5.3108-3117.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Eden W., Gonzalez N. M., de Vries R. R., Convit J., van Rood J. J. HLA-linked control of predisposition to lepromatous leprosy. J Infect Dis. 1985 Jan;151(1):9–14. doi: 10.1093/infdis/151.1.9. [DOI] [PubMed] [Google Scholar]
- van Eden W., de Vries R. R., D'Amaro J., Schreuder I., Leiker D. L., van Rood J. J. HLA-DR-associated genetic control of the type of leprosy in a population from surinam. Hum Immunol. 1982 Jul;4(4):343–350. doi: 10.1016/0198-8859(82)90007-6. [DOI] [PubMed] [Google Scholar]