Skip to main content
Emerging Infectious Diseases logoLink to Emerging Infectious Diseases
. 1998 Jan-Mar;4(1):49–57. doi: 10.3201/eid0401.980107

Proteases of malaria parasites: new targets for chemotherapy.

P J Rosenthal 1
PMCID: PMC2627653  PMID: 9452398

Abstract

The increasing resistance of malaria parasites to antimalarial drugs is a major contributor to the reemergence of the disease as a major public health problem and its spread in new locations and populations. Among potential targets for new modes of chemotherapy are malarial proteases, which appear to mediate processes within the erythrocytic malarial life cycle, including the rupture and invasion of infected erythrocytes and the degradation of hemoglobin by trophozoites. Cysteine and aspartic protease inhibitors are now under study as potential antimalarials. Lead compounds have blocked in vitro parasite development at nanomolar concentrations and cured malaria-infected mice. This review discusses available antimalarial agents and summarizes experimental results that support development of protease inhibitors as antimalarial drugs.

Full Text

The Full Text of this article is available as a PDF (60.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aissi E., Charet P., Bouquelet S., Biguet J. Endoprotease in Plasmodium yoelii nigeriensis. Comp Biochem Physiol B. 1983;74(3):559–566. doi: 10.1016/0305-0491(83)90229-8. [DOI] [PubMed] [Google Scholar]
  2. Alonso P. L., Lindsay S. W., Armstrong J. R., Conteh M., Hill A. G., David P. H., Fegan G., de Francisco A., Hall A. J., Shenton F. C. The effect of insecticide-treated bed nets on mortality of Gambian children. Lancet. 1991 Jun 22;337(8756):1499–1502. doi: 10.1016/0140-6736(91)93194-e. [DOI] [PubMed] [Google Scholar]
  3. Anderson S. L., Berman J., Kuschner R., Wesche D., Magill A., Wellde B., Schneider I., Dunne M., Schuster B. G. Prophylaxis of Plasmodium falciparum malaria with azithromycin administered to volunteers. Ann Intern Med. 1995 Nov 15;123(10):771–773. doi: 10.7326/0003-4819-123-10-199511150-00005. [DOI] [PubMed] [Google Scholar]
  4. Asawamahasakda W., Ittarat I., Chang C. C., McElroy P., Meshnick S. R. Effects of antimalarials and protease inhibitors on plasmodial hemozoin production. Mol Biochem Parasitol. 1994 Oct;67(2):183–191. doi: 10.1016/0166-6851(94)00128-6. [DOI] [PubMed] [Google Scholar]
  5. Bailly E., Jambou R., Savel J., Jaureguiberry G. Plasmodium falciparum: differential sensitivity in vitro to E-64 (cysteine protease inhibitor) and Pepstatin A (aspartyl protease inhibitor). J Protozool. 1992 Sep-Oct;39(5):593–599. doi: 10.1111/j.1550-7408.1992.tb04856.x. [DOI] [PubMed] [Google Scholar]
  6. Bailly E., Savel J., Mahouy G., Jaureguiberry G. Plasmodium falciparum: isolation and characterization of a 55-kDa protease with a cathepsin D-like activity from P. falciparum. Exp Parasitol. 1991 Apr;72(3):278–284. doi: 10.1016/0014-4894(91)90147-o. [DOI] [PubMed] [Google Scholar]
  7. Bernard F., Schrével J. Purification of a Plasmodium berghei neutral endopeptidase and its localization in merozoite. Mol Biochem Parasitol. 1987 Nov;26(1-2):167–173. doi: 10.1016/0166-6851(87)90140-x. [DOI] [PubMed] [Google Scholar]
  8. Blackman M. J., Holder A. A. Secondary processing of the Plasmodium falciparum merozoite surface protein-1 (MSP1) by a calcium-dependent membrane-bound serine protease: shedding of MSP133 as a noncovalently associated complex with other fragments of the MSP1. Mol Biochem Parasitol. 1992 Feb;50(2):307–315. doi: 10.1016/0166-6851(92)90228-c. [DOI] [PubMed] [Google Scholar]
  9. Bond J. S., Butler P. E. Intracellular proteases. Annu Rev Biochem. 1987;56:333–364. doi: 10.1146/annurev.bi.56.070187.002001. [DOI] [PubMed] [Google Scholar]
  10. Bradley D. J., Warhurst D. C. Malaria prophylaxis: guidelines for travellers from Britain. Malaria Reference Laboratory of the Public Health Laboratory Service, London. BMJ. 1995 Mar 18;310(6981):709–714. doi: 10.1136/bmj.310.6981.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Braun-Breton C., Rosenberry T. L., da Silva L. P. Induction of the proteolytic activity of a membrane protein in Plasmodium falciparum by phosphatidyl inositol-specific phospholipase C. Nature. 1988 Mar 31;332(6163):457–459. doi: 10.1038/332457a0. [DOI] [PubMed] [Google Scholar]
  12. Bryson H. M., Goa K. L. Halofantrine. A review of its antimalarial activity, pharmacokinetic properties and therapeutic potential. Drugs. 1992 Feb;43(2):236–258. doi: 10.2165/00003495-199243020-00009. [DOI] [PubMed] [Google Scholar]
  13. Collins F. H., Besansky N. J. Vector biology and the control of malaria in Africa. Science. 1994 Jun 24;264(5167):1874–1875. doi: 10.1126/science.8009215. [DOI] [PubMed] [Google Scholar]
  14. Dame J. B., Reddy G. R., Yowell C. A., Dunn B. M., Kay J., Berry C. Sequence, expression and modeled structure of an aspartic proteinase from the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol. 1994 Apr;64(2):177–190. doi: 10.1016/0166-6851(94)90024-8. [DOI] [PubMed] [Google Scholar]
  15. Deguercy A., Hommel M., Schrével J. Purification and characterization of 37-kilodalton proteases from Plasmodium falciparum and Plasmodium berghei which cleave erythrocyte cytoskeletal components. Mol Biochem Parasitol. 1990 Jan 15;38(2):233–244. doi: 10.1016/0166-6851(90)90026-i. [DOI] [PubMed] [Google Scholar]
  16. Dluzewski A. R., Rangachari K., Wilson R. J., Gratzer W. B. Plasmodium falciparum: protease inhibitors and inhibition of erythrocyte invasion. Exp Parasitol. 1986 Dec;62(3):416–422. doi: 10.1016/0014-4894(86)90050-0. [DOI] [PubMed] [Google Scholar]
  17. Domínguez J. N., López S., Charris J., Iarruso L., Lobo G., Semenov A., Olson J. E., Rosenthal P. J. Synthesis and antimalarial effects of phenothiazine inhibitors of a Plasmodium falciparum cysteine protease. J Med Chem. 1997 Aug 15;40(17):2726–2732. doi: 10.1021/jm970266p. [DOI] [PubMed] [Google Scholar]
  18. Francis S. E., Gluzman I. Y., Oksman A., Banerjee D., Goldberg D. E. Characterization of native falcipain, an enzyme involved in Plasmodium falciparum hemoglobin degradation. Mol Biochem Parasitol. 1996 Dec 20;83(2):189–200. doi: 10.1016/s0166-6851(96)02772-7. [DOI] [PubMed] [Google Scholar]
  19. Francis S. E., Gluzman I. Y., Oksman A., Knickerbocker A., Mueller R., Bryant M. L., Sherman D. R., Russell D. G., Goldberg D. E. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J. 1994 Jan 15;13(2):306–317. doi: 10.1002/j.1460-2075.1994.tb06263.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gamboa de Domínguez N. D., Rosenthal P. J. Cysteine proteinase inhibitors block early steps in hemoglobin degradation by cultured malaria parasites. Blood. 1996 May 15;87(10):4448–4454. [PubMed] [Google Scholar]
  21. Gluzman I. Y., Francis S. E., Oksman A., Smith C. E., Duffin K. L., Goldberg D. E. Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. J Clin Invest. 1994 Apr;93(4):1602–1608. doi: 10.1172/JCI117140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Goldberg D. E., Slater A. F., Beavis R., Chait B., Cerami A., Henderson G. B. Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease. J Exp Med. 1991 Apr 1;173(4):961–969. doi: 10.1084/jem.173.4.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gordeuk V. R., Thuma P. E., Brittenham G. M., Biemba G., Zulu S., Simwanza G., Kalense P., M'Hango A., Parry D., Poltera A. A. Iron chelation as a chemotherapeutic strategy for falciparum malaria. Am J Trop Med Hyg. 1993 Feb;48(2):193–197. doi: 10.4269/ajtmh.1993.48.193. [DOI] [PubMed] [Google Scholar]
  24. Gordeuk V., Thuma P., Brittenham G., McLaren C., Parry D., Backenstose A., Biemba G., Msiska R., Holmes L., McKinley E. Effect of iron chelation therapy on recovery from deep coma in children with cerebral malaria. N Engl J Med. 1992 Nov 19;327(21):1473–1477. doi: 10.1056/NEJM199211193272101. [DOI] [PubMed] [Google Scholar]
  25. Gyang F. N., Poole B., Trager W. Peptidases from Plasmodium falciparum cultured in vitro. Mol Biochem Parasitol. 1982 Apr;5(4):263–273. doi: 10.1016/0166-6851(82)90034-2. [DOI] [PubMed] [Google Scholar]
  26. Haile L. G., Flaherty J. F. Atovaquone: a review. Ann Pharmacother. 1993 Dec;27(12):1488–1494. doi: 10.1177/106002809302701215. [DOI] [PubMed] [Google Scholar]
  27. Hellgren U., Kihamia C. M., Bergqvist Y., Lebbad M., Premji Z., Rombo L. Standard and reduced doses of sulfadoxine-pyrimethamine for treatment of Plasmodium falciparum in Tanzania, with determination of drug concentrations and susceptibility in vitro. Trans R Soc Trop Med Hyg. 1990 Jul-Aug;84(4):469–472. doi: 10.1016/0035-9203(90)90002-v. [DOI] [PubMed] [Google Scholar]
  28. Hill J., Tyas L., Phylip L. H., Kay J., Dunn B. M., Berry C. High level expression and characterisation of Plasmepsin II, an aspartic proteinase from Plasmodium falciparum. FEBS Lett. 1994 Sep 26;352(2):155–158. doi: 10.1016/0014-5793(94)00940-6. [DOI] [PubMed] [Google Scholar]
  29. Kamchonwongpaisan S., Samoff E., Meshnick S. R. Identification of hemoglobin degradation products in Plasmodium falciparum. Mol Biochem Parasitol. 1997 Jun;86(2):179–186. doi: 10.1016/s0166-6851(97)02855-7. [DOI] [PubMed] [Google Scholar]
  30. Knapp B., Hundt E., Nau U., Küpper H. A. Molecular cloning, genomic structure and localization in a blood stage antigen of Plasmodium falciparum characterized by a serine stretch. Mol Biochem Parasitol. 1989 Jan 1;32(1):73–83. doi: 10.1016/0166-6851(89)90131-x. [DOI] [PubMed] [Google Scholar]
  31. Knapp B., Nau U., Hundt E., Küpper H. A. A new blood stage antigen of Plasmodium falciparum highly homologous to the serine-stretch protein SERP. Mol Biochem Parasitol. 1991 Jan;44(1):1–13. doi: 10.1016/0166-6851(91)90215-r. [DOI] [PubMed] [Google Scholar]
  32. Kolakovich K. A., Gluzman I. Y., Duffin K. L., Goldberg D. E. Generation of hemoglobin peptides in the acidic digestive vacuole of Plasmodium falciparum implicates peptide transport in amino acid production. Mol Biochem Parasitol. 1997 Aug;87(2):123–135. doi: 10.1016/s0166-6851(97)00062-5. [DOI] [PubMed] [Google Scholar]
  33. Li R., Kenyon G. L., Cohen F. E., Chen X., Gong B., Dominguez J. N., Davidson E., Kurzban G., Miller R. E., Nuzum E. O. In vitro antimalarial activity of chalcones and their derivatives. J Med Chem. 1995 Dec 22;38(26):5031–5037. doi: 10.1021/jm00026a010. [DOI] [PubMed] [Google Scholar]
  34. Li W. B., Bzik D. J., Horii T., Inselburg J. Structure and expression of the Plasmodium falciparum SERA gene. Mol Biochem Parasitol. 1989 Feb;33(1):13–25. doi: 10.1016/0166-6851(89)90037-6. [DOI] [PubMed] [Google Scholar]
  35. Mayer R., Picard I., Lawton P., Grellier P., Barrault C., Monsigny M., Schrével J. Peptide derivatives specific for a Plasmodium falciparum proteinase inhibit the human erythrocyte invasion by merozoites. J Med Chem. 1991 Oct;34(10):3029–3035. doi: 10.1021/jm00114a011. [DOI] [PubMed] [Google Scholar]
  36. McKerrow J. H., Sun E., Rosenthal P. J., Bouvier J. The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol. 1993;47:821–853. doi: 10.1146/annurev.mi.47.100193.004133. [DOI] [PubMed] [Google Scholar]
  37. Meshnick S. R., Taylor T. E., Kamchonwongpaisan S. Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiol Rev. 1996 Jun;60(2):301–315. doi: 10.1128/mr.60.2.301-315.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Moon R. P., Tyas L., Certa U., Rupp K., Bur D., Jacquet C., Matile H., Loetscher H., Grueninger-Leitch F., Kay J. Expression and characterisation of plasmepsin I from Plasmodium falciparum. Eur J Biochem. 1997 Mar 1;244(2):552–560. doi: 10.1111/j.1432-1033.1997.00552.x. [DOI] [PubMed] [Google Scholar]
  39. Murphy G. S., Basri H., Purnomo, Andersen E. M., Bangs M. J., Mount D. L., Gorden J., Lal A. A., Purwokusumo A. R., Harjosuwarno S. Vivax malaria resistant to treatment and prophylaxis with chloroquine. Lancet. 1993 Jan 9;341(8837):96–100. doi: 10.1016/0140-6736(93)92568-e. [DOI] [PubMed] [Google Scholar]
  40. Olliaro P., Cattani J., Wirth D. Malaria, the submerged disease. JAMA. 1996 Jan 17;275(3):230–233. [PubMed] [Google Scholar]
  41. Olliaro P., Nevill C., LeBras J., Ringwald P., Mussano P., Garner P., Brasseur P. Systematic review of amodiaquine treatment in uncomplicated malaria. Lancet. 1996 Nov 2;348(9036):1196–1201. doi: 10.1016/S0140-6736(96)06217-4. [DOI] [PubMed] [Google Scholar]
  42. Panisko D. M., Keystone J. S. Treatment of malaria--1990. Drugs. 1990 Feb;39(2):160–189. doi: 10.2165/00003495-199039020-00002. [DOI] [PubMed] [Google Scholar]
  43. Perkins M. E. Erythrocyte invasion by the malarial merozoite: recent advances. Exp Parasitol. 1989 Jul;69(1):94–99. doi: 10.1016/0014-4894(89)90175-6. [DOI] [PubMed] [Google Scholar]
  44. Radloff P. D., Philipps J., Nkeyi M., Hutchinson D., Kremsner P. G. Atovaquone and proguanil for Plasmodium falciparum malaria. Lancet. 1996 Jun 1;347(9014):1511–1514. doi: 10.1016/s0140-6736(96)90671-6. [DOI] [PubMed] [Google Scholar]
  45. Ring C. S., Sun E., McKerrow J. H., Lee G. K., Rosenthal P. J., Kuntz I. D., Cohen F. E. Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3583–3587. doi: 10.1073/pnas.90.8.3583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ringwald P., Bickii J., Basco L. Randomised trial of pyronaridine versus chloroquine for acute uncomplicated falciparum malaria in Africa. Lancet. 1996 Jan 6;347(8993):24–28. doi: 10.1016/s0140-6736(96)91558-5. [DOI] [PubMed] [Google Scholar]
  47. Rockett K. A., Playfair J. H., Ashall F., Targett G. A., Angliker H., Shaw E. Inhibition of intraerythrocytic development of Plasmodium falciparum by proteinase inhibitors. FEBS Lett. 1990 Jan 1;259(2):257–259. doi: 10.1016/0014-5793(90)80022-b. [DOI] [PubMed] [Google Scholar]
  48. Roggwiller E., Bétoulle M. E., Blisnick T., Braun Breton C. A role for erythrocyte band 3 degradation by the parasite gp76 serine protease in the formation of the parasitophorous vacuole during invasion of erythrocytes by Plasmodium falciparum. Mol Biochem Parasitol. 1996 Nov 12;82(1):13–24. doi: 10.1016/0166-6851(96)02714-4. [DOI] [PubMed] [Google Scholar]
  49. Roggwiller E., Fricaud A. C., Blisnick T., Braun-Breton C. Host urokinase-type plasminogen activator participates in the release of malaria merozoites from infected erythrocytes. Mol Biochem Parasitol. 1997 May;86(1):49–59. doi: 10.1016/s0166-6851(97)02848-x. [DOI] [PubMed] [Google Scholar]
  50. Rosenthal P. J., Kim K., McKerrow J. H., Leech J. H. Identification of three stage-specific proteinases of Plasmodium falciparum. J Exp Med. 1987 Sep 1;166(3):816–821. doi: 10.1084/jem.166.3.816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Rosenthal P. J., Lee G. K., Smith R. E. Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. J Clin Invest. 1993 Mar;91(3):1052–1056. doi: 10.1172/JCI116262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rosenthal P. J., McKerrow J. H., Aikawa M., Nagasawa H., Leech J. H. A malarial cysteine proteinase is necessary for hemoglobin degradation by Plasmodium falciparum. J Clin Invest. 1988 Nov;82(5):1560–1566. doi: 10.1172/JCI113766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Rosenthal P. J., McKerrow J. H., Rasnick D., Leech J. H. Plasmodium falciparum: inhibitors of lysosomal cysteine proteinases inhibit a trophozoite proteinase and block parasite development. Mol Biochem Parasitol. 1989 Jun 15;35(2):177–183. doi: 10.1016/0166-6851(89)90120-5. [DOI] [PubMed] [Google Scholar]
  54. Rosenthal P. J., Meshnick S. R. Hemoglobin catabolism and iron utilization by malaria parasites. Mol Biochem Parasitol. 1996 Dec 20;83(2):131–139. doi: 10.1016/s0166-6851(96)02763-6. [DOI] [PubMed] [Google Scholar]
  55. Rosenthal P. J., Nelson R. G. Isolation and characterization of a cysteine proteinase gene of Plasmodium falciparum. Mol Biochem Parasitol. 1992 Mar;51(1):143–152. doi: 10.1016/0166-6851(92)90209-3. [DOI] [PubMed] [Google Scholar]
  56. Rosenthal P. J., Olson J. E., Lee G. K., Palmer J. T., Klaus J. L., Rasnick D. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. Antimicrob Agents Chemother. 1996 Jul;40(7):1600–1603. doi: 10.1128/aac.40.7.1600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Rosenthal P. J. Plasmodium falciparum: effects of proteinase inhibitors on globin hydrolysis by cultured malaria parasites. Exp Parasitol. 1995 Mar;80(2):272–281. doi: 10.1006/expr.1995.1033. [DOI] [PubMed] [Google Scholar]
  58. Rosenthal P. J., Wollish W. S., Palmer J. T., Rasnick D. Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J Clin Invest. 1991 Nov;88(5):1467–1472. doi: 10.1172/JCI115456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Salas F., Fichmann J., Lee G. K., Scott M. D., Rosenthal P. J. Functional expression of falcipain, a Plasmodium falciparum cysteine proteinase, supports its role as a malarial hemoglobinase. Infect Immun. 1995 Jun;63(6):2120–2125. doi: 10.1128/iai.63.6.2120-2125.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Schrevel J., Grellier P., Mayer R., Monsigny M. Neutral proteases involved in the reinvasion of erythrocytes by Plasmodium merozoites. Biol Cell. 1988;64(2):233–244. doi: 10.1016/0248-4900(88)90082-2. [DOI] [PubMed] [Google Scholar]
  61. Silva A. M., Lee A. Y., Gulnik S. V., Maier P., Collins J., Bhat T. N., Collins P. J., Cachau R. E., Luker K. E., Gluzman I. Y. Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10034–10039. doi: 10.1073/pnas.93.19.10034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Slater A. F. Malaria pigment. Exp Parasitol. 1992 May;74(3):362–365. doi: 10.1016/0014-4894(92)90162-4. [DOI] [PubMed] [Google Scholar]
  63. Vander Jagt D. L., Baack B. R., Hunsaker L. A. Purification and characterization of an aminopeptidase from Plasmodium falciparum. Mol Biochem Parasitol. 1984 Jan;10(1):45–54. doi: 10.1016/0166-6851(84)90017-3. [DOI] [PubMed] [Google Scholar]
  64. Vander Jagt D. L., Caughey W. S., Campos N. M., Hunsaker L. A., Zanner M. A. Parasite proteases and antimalarial activities of protease inhibitors. Prog Clin Biol Res. 1989;313:105–118. [PubMed] [Google Scholar]
  65. Walsh J. A. Disease problems in the Third World. Ann N Y Acad Sci. 1989;569:1–16. doi: 10.1111/j.1749-6632.1989.tb27354.x. [DOI] [PubMed] [Google Scholar]
  66. White N. J. The treatment of malaria. N Engl J Med. 1996 Sep 12;335(11):800–806. doi: 10.1056/NEJM199609123351107. [DOI] [PubMed] [Google Scholar]
  67. de Vries P. J., Dien T. K. Clinical pharmacology and therapeutic potential of artemisinin and its derivatives in the treatment of malaria. Drugs. 1996 Dec;52(6):818–836. doi: 10.2165/00003495-199652060-00004. [DOI] [PubMed] [Google Scholar]
  68. vander Jagt D. L., Hunsaker L. A., Campos N. M., Scaletti J. V. Localization and characterization of hemoglobin-degrading aspartic proteinases from the malarial parasite Plasmodium falciparum. Biochim Biophys Acta. 1992 Aug 21;1122(3):256–264. doi: 10.1016/0167-4838(92)90401-x. [DOI] [PubMed] [Google Scholar]

Articles from Emerging Infectious Diseases are provided here courtesy of Centers for Disease Control and Prevention

RESOURCES