Skip to main content
Emerging Infectious Diseases logoLink to Emerging Infectious Diseases
. 1999 Sep-Oct;5(5):672–680. doi: 10.3201/eid0505.990508

Influence of host genetics on the severity of coccidioidomycosis.

L Louie 1, S Ng 1, R Hajjeh 1, R Johnson 1, D Vugia 1, S B Werner 1, R Talbot 1, W Klitz 1
PMCID: PMC2627717  PMID: 10511523

Abstract

Coccidioidomycosis, a mild flulike illness in approximately 40% of infected persons, progresses to severe pulmonary or disseminated disease in 1% to 10% of symptomatic cases. We examined host genetic influences on disease severity among class II HLA loci and the ABO blood group. Participants included African-American, Caucasian, and Hispanic persons with mild or severe disseminated coccidioidomycosis from Kern County, California. Among Hispanics, predisposition to symptomatic disease and severe disseminated disease is associated with blood types A and B, respectively. The HLA class II DRB1*1301 allele marks a pre-disposition to severe disseminated disease in each of the three groups. Reduced risk for severe disease is associated with DRB1*0301-DQB1*0201 among Caucasians and Hispanics and with DRB1*1501-DQB1*0602 among African-Americans. These data support the hypothesis that host genes, in particular HLA class II and the ABO blood group, influence susceptibility to severe coccidioidomycosis.

Full Text

The Full Text of this article is available as a PDF (81.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Catanzaro A., Spitler L. E., Moser K. M. Cellular immune response in coccidioidomycosis. Cell Immunol. 1975 Feb;15(2):360–371. doi: 10.1016/0008-8749(75)90014-3. [DOI] [PubMed] [Google Scholar]
  2. Chen Y., Winchester R., Korber B., Gagliano J., Bryson Y., Hutto C., Martin N., McSherry G., Petru A., Wara D. Influence of HLA alleles on the rate of progression of vertically transmitted HIV infection in children: association of several HLA-DR13 alleles with long-term survivorship and the potential association of HLA-A*2301 with rapid progression to AIDS. Long-Term Survivor Study. Hum Immunol. 1997 Jul;55(2):154–162. doi: 10.1016/s0198-8859(97)00092-x. [DOI] [PubMed] [Google Scholar]
  3. Deresinski S. C., Pappagianis D., Stevens D. A. Association of ABO blood group and outcome of coccidioidal infection. Sabouraudia. 1979 Sep;17(3):261–264. doi: 10.1080/00362177985380381. [DOI] [PubMed] [Google Scholar]
  4. Erlich H. A., Zeidler A., Chang J., Shaw S., Raffel L. J., Klitz W., Beshkov Y., Costin G., Pressman S., Bugawan T. HLA class II alleles and susceptibility and resistance to insulin dependent diabetes mellitus in Mexican-American families. Nat Genet. 1993 Apr;3(4):358–364. doi: 10.1038/ng0493-358. [DOI] [PubMed] [Google Scholar]
  5. Flynn N. M., Hoeprich P. D., Kawachi M. M., Lee K. K., Lawrence R. M., Goldstein E., Jordan G. W., Kundargi R. S., Wong G. A. An unusual outbreak of windborne coccidioidomycosis. N Engl J Med. 1979 Aug 16;301(7):358–361. doi: 10.1056/NEJM197908163010705. [DOI] [PubMed] [Google Scholar]
  6. Greggio N. A., Cameran M., Giaquinto C., Zacchello F., Koroliuk D., Colizzi V. DNA HLA-DRB1 analysis in children of positive mothers and estimated risk of vertical HIV transmission. Dis Markers. 1993 Jun;11(1):29–35. doi: 10.1155/1993/292684. [DOI] [PubMed] [Google Scholar]
  7. Guo S. W., Thompson E. A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics. 1992 Jun;48(2):361–372. [PubMed] [Google Scholar]
  8. Kirkland T. N., Finley F., Orsborn K. I., Galgiani J. N. Evaluation of the proline-rich antigen of Coccidioides immitis as a vaccine candidate in mice. Infect Immun. 1998 Aug;66(8):3519–3522. doi: 10.1128/iai.66.8.3519-3522.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kirkland T. N., Thomas P. W., Finley F., Cole G. T. Immunogenicity of a 48-kilodalton recombinant T-cell-reactive protein of Coccidioides immitis. Infect Immun. 1998 Feb;66(2):424–431. doi: 10.1128/iai.66.2.424-431.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Long J. C., Williams R. C., Urbanek M. An E-M algorithm and testing strategy for multiple-locus haplotypes. Am J Hum Genet. 1995 Mar;56(3):799–810. [PMC free article] [PubMed] [Google Scholar]
  11. Mosmann T. R., Coffman R. L. Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv Immunol. 1989;46:111–147. doi: 10.1016/s0065-2776(08)60652-5. [DOI] [PubMed] [Google Scholar]
  12. Pappagianis D. Epidemiology of coccidioidomycosis. Curr Top Med Mycol. 1988;2:199–238. doi: 10.1007/978-1-4612-3730-3_6. [DOI] [PubMed] [Google Scholar]
  13. Schneider E., Hajjeh R. A., Spiegel R. A., Jibson R. W., Harp E. L., Marshall G. A., Gunn R. A., McNeil M. M., Pinner R. W., Baron R. C. A coccidioidomycosis outbreak following the Northridge, Calif, earthquake. JAMA. 1997 Mar 19;277(11):904–908. [PubMed] [Google Scholar]
  14. Serjeantson S. W., Easteal S. Class II histocompatibility genes and insulin-dependent diabetes mellitus. Mol Biol Med. 1989 Jun;6(3):219–226. [PubMed] [Google Scholar]
  15. Winchester R., Chen Y., Rose S., Selby J., Borkowsky W. Major histocompatibility complex class II DR alleles DRB1*1501 and those encoding HLA-DR13 are preferentially associated with a diminution in maternally transmitted human immunodeficiency virus 1 infection in different ethnic groups: determination by an automated sequence-based typing method. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12374–12378. doi: 10.1073/pnas.92.26.12374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zimmermann C. R., Johnson S. M., Martens G. W., White A. G., Zimmer B. L., Pappagianis D. Protection against lethal murine coccidioidomycosis by a soluble vaccine from spherules. Infect Immun. 1998 May;66(5):2342–2345. doi: 10.1128/iai.66.5.2342-2345.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Emerging Infectious Diseases are provided here courtesy of Centers for Disease Control and Prevention

RESOURCES