Skip to main content
Emerging Infectious Diseases logoLink to Emerging Infectious Diseases
. 2000 Sep-Oct;6(5):449–457. doi: 10.3201/eid0605.000502

Antigenic variation in vector-borne pathogens.

A G Barbour 1, B I Restrepo 1
PMCID: PMC2627965  PMID: 10998374

Abstract

Several pathogens of humans and domestic animals depend on hematophagous arthropods to transmit them from one vertebrate reservoir host to another and maintain them in an environment. These pathogens use antigenic variation to prolong their circulation in the blood and thus increase the likelihood of transmission. By convergent evolution, bacterial and protozoal vector-borne pathogens have acquired similar genetic mechanisms for successful antigenic variation. Borrelia spp. and Anaplasma marginale (among bacteria) and African trypanosomes, Plasmodium falciparum, and Babesia bovis (among parasites) are examples of pathogens using these mechanisms. Antigenic variation poses a challenge in the development of vaccines against vector-borne pathogens.

Full Text

The Full Text of this article is available as a PDF (66.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allred D. R., Carlton J. M., Satcher R. L., Long J. A., Brown W. C., Patterson P. E., O'Connor R. M., Stroup S. E. The ves multigene family of B. bovis encodes components of rapid antigenic variation at the infected erythrocyte surface. Mol Cell. 2000 Jan;5(1):153–162. doi: 10.1016/s1097-2765(00)80411-6. [DOI] [PubMed] [Google Scholar]
  2. Allred D. R., Cinque R. M., Lane T. J., Ahrens K. P. Antigenic variation of parasite-derived antigens on the surface of Babesia bovis-infected erythrocytes. Infect Immun. 1994 Jan;62(1):91–98. doi: 10.1128/iai.62.1.91-98.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baltz T., Giroud C., Bringaud F., Eisen H., Jacquemot C., Roth C. W. Exposed epitopes on a Trypanosoma equiperdum variant surface glycoprotein altered by point mutations. EMBO J. 1991 Jul;10(7):1653–1659. doi: 10.1002/j.1460-2075.1991.tb07688.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barbour A. G., Burman N., Carter C. J., Kitten T., Bergström S. Variable antigen genes of the relapsing fever agent Borrelia hermsii are activated by promoter addition. Mol Microbiol. 1991 Feb;5(2):489–493. doi: 10.1111/j.1365-2958.1991.tb02132.x. [DOI] [PubMed] [Google Scholar]
  5. Barbour A. G., Hayes S. F. Biology of Borrelia species. Microbiol Rev. 1986 Dec;50(4):381–400. doi: 10.1128/mr.50.4.381-400.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barbour A. G. Linear DNA of Borrelia species and antigenic variation. Trends Microbiol. 1993 Sep;1(6):236–239. doi: 10.1016/0966-842x(93)90139-i. [DOI] [PubMed] [Google Scholar]
  7. Barbour A. G., Tessier S. L., Stoenner H. G. Variable major proteins of Borrellia hermsii. J Exp Med. 1982 Nov 1;156(5):1312–1324. doi: 10.1084/jem.156.5.1312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Barbour A. G., Tessier S. L., Todd W. J. Lyme disease spirochetes and ixodid tick spirochetes share a common surface antigenic determinant defined by a monoclonal antibody. Infect Immun. 1983 Aug;41(2):795–804. doi: 10.1128/iai.41.2.795-804.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Baruch D. I., Pasloske B. L., Singh H. B., Bi X., Ma X. C., Feldman M., Taraschi T. F., Howard R. J. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell. 1995 Jul 14;82(1):77–87. doi: 10.1016/0092-8674(95)90054-3. [DOI] [PubMed] [Google Scholar]
  10. Bitter W., Gerrits H., Kieft R., Borst P. The role of transferrin-receptor variation in the host range of Trypanosoma brucei. Nature. 1998 Jan 29;391(6666):499–502. doi: 10.1038/35166. [DOI] [PubMed] [Google Scholar]
  11. Burman N., Bergström S., Restrepo B. I., Barbour A. G. The variable antigens Vmp7 and Vmp21 of the relapsing fever bacterium Borrelia hermsii are structurally analogous to the VSG proteins of the African trypanosome. Mol Microbiol. 1990 Oct;4(10):1715–1726. doi: 10.1111/j.1365-2958.1990.tb00549.x. [DOI] [PubMed] [Google Scholar]
  12. Cadavid D., Thomas D. D., Crawley R., Barbour A. G. Variability of a bacterial surface protein and disease expression in a possible mouse model of systemic Lyme borreliosis. J Exp Med. 1994 Feb 1;179(2):631–642. doi: 10.1084/jem.179.2.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Carter C. J., Bergström S., Norris S. J., Barbour A. G. A family of surface-exposed proteins of 20 kilodaltons in the genus Borrelia. Infect Immun. 1994 Jul;62(7):2792–2799. doi: 10.1128/iai.62.7.2792-2799.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chen Q., Fernandez V., Sundström A., Schlichtherle M., Datta S., Hagblom P., Wahlgren M. Developmental selection of var gene expression in Plasmodium falciparum. Nature. 1998 Jul 23;394(6691):392–395. doi: 10.1038/28660. [DOI] [PubMed] [Google Scholar]
  15. Deitsch K. W., Moxon E. R., Wellems T. E. Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol Mol Biol Rev. 1997 Sep;61(3):281–293. doi: 10.1128/mmbr.61.3.281-293.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fernandez V., Hommel M., Chen Q., Hagblom P., Wahlgren M. Small, clonally variant antigens expressed on the surface of the Plasmodium falciparum-infected erythrocyte are encoded by the rif gene family and are the target of human immune responses. J Exp Med. 1999 Nov 15;190(10):1393–1404. doi: 10.1084/jem.190.10.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. French D. M., Brown W. C., Palmer G. H. Emergence of Anaplasma marginale antigenic variants during persistent rickettsemia. Infect Immun. 1999 Nov;67(11):5834–5840. doi: 10.1128/iai.67.11.5834-5840.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gardner J. P., Pinches R. A., Roberts D. J., Newbold C. I. Variant antigens and endothelial receptor adhesion in Plasmodium falciparum. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3503–3508. doi: 10.1073/pnas.93.8.3503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hernandez-Rivas R., Mattei D., Sterkers Y., Peterson D. S., Wellems T. E., Scherf A. Expressed var genes are found in Plasmodium falciparum subtelomeric regions. Mol Cell Biol. 1997 Feb;17(2):604–611. doi: 10.1128/mcb.17.2.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hinnebusch B. J., Barbour A. G., Restrepo B. I., Schwan T. G. Population structure of the relapsing fever spirochete Borrelia hermsii as indicated by polymorphism of two multigene families that encode immunogenic outer surface lipoproteins. Infect Immun. 1998 Feb;66(2):432–440. doi: 10.1128/iai.66.2.432-440.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jonsson M., Noppa L., Barbour A. G., Bergström S. Heterogeneity of outer membrane proteins in Borrelia burgdorferi: comparison of osp operons of three isolates of different geographic origins. Infect Immun. 1992 May;60(5):1845–1853. doi: 10.1128/iai.60.5.1845-1853.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kieser S. T., Eriks I. S., Palmer G. H. Cyclic rickettsemia during persistent Anaplasma marginale infection of cattle. Infect Immun. 1990 Apr;58(4):1117–1119. doi: 10.1128/iai.58.4.1117-1119.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kitten T., Barbour A. G. Juxtaposition of expressed variable antigen genes with a conserved telomere in the bacterium Borrelia hermsii. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6077–6081. doi: 10.1073/pnas.87.16.6077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kitten T., Barrera A. V., Barbour A. G. Intragenic recombination and a chimeric outer membrane protein in the relapsing fever agent Borrelia hermsii. J Bacteriol. 1993 May;175(9):2516–2522. doi: 10.1128/jb.175.9.2516-2522.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kyes S. A., Rowe J. A., Kriek N., Newbold C. I. Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9333–9338. doi: 10.1073/pnas.96.16.9333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lamont G. S., Tucker R. S., Cross G. A. Analysis of antigen switching rates in Trypanosoma brucei. Parasitology. 1986 Apr;92(Pt 2):355–367. doi: 10.1017/s003118200006412x. [DOI] [PubMed] [Google Scholar]
  27. Lips S., Revelard P., Pays E. Identification of a new expression site-associated gene in the complete 30.5 kb sequence from the AnTat 1.3A variant surface protein gene expression site of Trypanosoma brucei. Mol Biochem Parasitol. 1993 Nov;62(1):135–137. doi: 10.1016/0166-6851(93)90189-5. [DOI] [PubMed] [Google Scholar]
  28. McCulloch R., Barry J. D. A role for RAD51 and homologous recombination in Trypanosoma brucei antigenic variation. Genes Dev. 1999 Nov 1;13(21):2875–2888. doi: 10.1101/gad.13.21.2875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. O'Connor R. M., Allred D. R. Selection of Babesia bovis-infected erythrocytes for adhesion to endothelial cells coselects for altered variant erythrocyte surface antigen isoforms. J Immunol. 2000 Feb 15;164(4):2037–2045. doi: 10.4049/jimmunol.164.4.2037. [DOI] [PubMed] [Google Scholar]
  30. O'Connor R. M., Lane T. J., Stroup S. E., Allred D. R. Characterization of a variant erythrocyte surface antigen (VESA1) expressed by Babesia bovis during antigenic variation. Mol Biochem Parasitol. 1997 Nov;89(2):259–270. doi: 10.1016/s0166-6851(97)00125-4. [DOI] [PubMed] [Google Scholar]
  31. Palmer G. H., Abbott J. R., French D. M., McElwain T. F. Persistence of Anaplasma ovis infection and conservation of the msp-2 and msp-3 multigene families within the genus Anaplasma. Infect Immun. 1998 Dec;66(12):6035–6039. doi: 10.1128/iai.66.12.6035-6039.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pays E., Tebabi P., Pays A., Coquelet H., Revelard P., Salmon D., Steinert M. The genes and transcripts of an antigen gene expression site from T. brucei. Cell. 1989 Jun 2;57(5):835–845. doi: 10.1016/0092-8674(89)90798-8. [DOI] [PubMed] [Google Scholar]
  33. Penningon P. M., Cadavid D., Bunikis J., Norris S. J., Barbour A. G. Extensive interplasmidic duplications change the virulence phenotype of the relapsing fever agent Borrelia turicatae. Mol Microbiol. 1999 Dec;34(5):1120–1132. doi: 10.1046/j.1365-2958.1999.01675.x. [DOI] [PubMed] [Google Scholar]
  34. Pennington P. M., Allred C. D., West C. S., Alvarez R., Barbour A. G. Arthritis severity and spirochete burden are determined by serotype in the Borrelia turicatae-mouse model of Lyme disease. Infect Immun. 1997 Jan;65(1):285–292. doi: 10.1128/iai.65.1.285-292.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Restrepo B. I., Barbour A. G. Antigen diversity in the bacterium B. hermsii through "somatic" mutations in rearranged vmp genes. Cell. 1994 Sep 9;78(5):867–876. doi: 10.1016/s0092-8674(94)90642-4. [DOI] [PubMed] [Google Scholar]
  36. Restrepo B. I., Carter C. J., Barbour A. G. Activation of a vmp pseudogene in Borrelia hermsii: an alternate mechanism of antigenic variation during relapsing fever. Mol Microbiol. 1994 Jul;13(2):287–299. doi: 10.1111/j.1365-2958.1994.tb00423.x. [DOI] [PubMed] [Google Scholar]
  37. Restrepo B. I., Kitten T., Carter C. J., Infante D., Barbour A. G. Subtelomeric expression regions of Borrelia hermsii linear plasmids are highly polymorphic. Mol Microbiol. 1992 Nov;6(22):3299–3311. doi: 10.1111/j.1365-2958.1992.tb02198.x. [DOI] [PubMed] [Google Scholar]
  38. Roberts D. J., Craig A. G., Berendt A. R., Pinches R., Nash G., Marsh K., Newbold C. I. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature. 1992 Jun 25;357(6380):689–692. doi: 10.1038/357689a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rudenko G., Blundell P. A., Dirks-Mulder A., Kieft R., Borst P. A ribosomal DNA promoter replacing the promoter of a telomeric VSG gene expression site can be efficiently switched on and off in T. brucei. Cell. 1995 Nov 17;83(4):547–553. doi: 10.1016/0092-8674(95)90094-2. [DOI] [PubMed] [Google Scholar]
  40. Rudenko G., Cross M., Borst P. Changing the end: antigenic variation orchestrated at the telomeres of African trypanosomes. Trends Microbiol. 1998 Mar;6(3):113–116. doi: 10.1016/s0966-842x(97)01200-6. [DOI] [PubMed] [Google Scholar]
  41. Scherf A., Hernandez-Rivas R., Buffet P., Bottius E., Benatar C., Pouvelle B., Gysin J., Lanzer M. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J. 1998 Sep 15;17(18):5418–5426. doi: 10.1093/emboj/17.18.5418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shamaei-Tousi A., Martin P., Bergh A., Burman N., Brännström T., Bergström S. Erythrocyte-aggregating relapsing fever spirochete Borrelia crocidurae induces formation of microemboli. J Infect Dis. 1999 Dec;180(6):1929–1938. doi: 10.1086/315118. [DOI] [PubMed] [Google Scholar]
  43. Smith J. D., Chitnis C. E., Craig A. G., Roberts D. J., Hudson-Taylor D. E., Peterson D. S., Pinches R., Newbold C. I., Miller L. H. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995 Jul 14;82(1):101–110. doi: 10.1016/0092-8674(95)90056-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stevenson B., Bockenstedt L. K., Barthold S. W. Expression and gene sequence of outer surface protein C of Borrelia burgdorferi reisolated from chronically infected mice. Infect Immun. 1994 Aug;62(8):3568–3571. doi: 10.1128/iai.62.8.3568-3571.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stoenner H. G., Dodd T., Larsen C. Antigenic variation of Borrelia hermsii. J Exp Med. 1982 Nov 1;156(5):1297–1311. doi: 10.1084/jem.156.5.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Su X. Z., Heatwole V. M., Wertheimer S. P., Guinet F., Herrfeldt J. A., Peterson D. S., Ravetch J. A., Wellems T. E. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995 Jul 14;82(1):89–100. doi: 10.1016/0092-8674(95)90055-1. [DOI] [PubMed] [Google Scholar]
  47. Sulsona C. R., Mahan S. M., Barbet A. F. The map1 gene of Cowdria ruminantium is a member of a multigene family containing both conserved and variable genes. Biochem Biophys Res Commun. 1999 Apr 13;257(2):300–305. doi: 10.1006/bbrc.1999.0459. [DOI] [PubMed] [Google Scholar]
  48. Turner C. M. The rate of antigenic variation in fly-transmitted and syringe-passaged infections of Trypanosoma brucei. FEMS Microbiol Lett. 1997 Aug 1;153(1):227–231. doi: 10.1111/j.1574-6968.1997.tb10486.x. [DOI] [PubMed] [Google Scholar]
  49. Vickerman K. Trypanosome sociology and antigenic variation. Parasitology. 1989;99 (Suppl):S37–S47. doi: 10.1017/s0031182000083402. [DOI] [PubMed] [Google Scholar]
  50. Vidal V., Scragg I. G., Cutler S. J., Rockett K. A., Fekade D., Warrell D. A., Wright D. J., Kwiatkowski D. Variable major lipoprotein is a principal TNF-inducing factor of louse-borne relapsing fever. Nat Med. 1998 Dec;4(12):1416–1420. doi: 10.1038/4007. [DOI] [PubMed] [Google Scholar]
  51. Wang I. N., Dykhuizen D. E., Qiu W., Dunn J. J., Bosler E. M., Luft B. J. Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto. Genetics. 1999 Jan;151(1):15–30. doi: 10.1093/genetics/151.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zhang J. R., Hardham J. M., Barbour A. G., Norris S. J. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell. 1997 Apr 18;89(2):275–285. doi: 10.1016/s0092-8674(00)80206-8. [DOI] [PubMed] [Google Scholar]
  53. Zhang J. R., Norris S. J. Kinetics and in vivo induction of genetic variation of vlsE in Borrelia burgdorferi. Infect Immun. 1998 Aug;66(8):3689–3697. doi: 10.1128/iai.66.8.3689-3697.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zhi N., Ohashi N., Rikihisa Y. Multiple p44 genes encoding major outer membrane proteins are expressed in the human granulocytic ehrlichiosis agent. J Biol Chem. 1999 Jun 18;274(25):17828–17836. doi: 10.1074/jbc.274.25.17828. [DOI] [PubMed] [Google Scholar]
  55. Zückert W. R., Meyer J., Barbour A. G. Comparative analysis and immunological characterization of the Borrelia Bdr protein family. Infect Immun. 1999 Jul;67(7):3257–3266. doi: 10.1128/iai.67.7.3257-3266.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. de Silva A. M., Zeidner N. S., Zhang Y., Dolan M. C., Piesman J., Fikrig E. Influence of outer surface protein A antibody on Borrelia burgdorferi within feeding ticks. Infect Immun. 1999 Jan;67(1):30–35. doi: 10.1128/iai.67.1.30-35.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. de la Vega I., González A., Blasco R., Calvo V., Viñuela E. Nucleotide sequence and variability of the inverted terminal repetitions of African swine fever virus DNA. Virology. 1994 May 15;201(1):152–156. doi: 10.1006/viro.1994.1277. [DOI] [PubMed] [Google Scholar]

Articles from Emerging Infectious Diseases are provided here courtesy of Centers for Disease Control and Prevention

RESOURCES