Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1993 Mar;31(3):588–592. doi: 10.1128/jcm.31.3.588-592.1993

Two highly antigenic sites in the human immunodeficiency virus type 1 reverse transcriptase.

E Björling 1, C A Boucher 1, A Samuelsson 1, T F Wolfs 1, G Utter 1, E Norrby 1, F Chiodi 1
PMCID: PMC262825  PMID: 7681439

Abstract

Antibodies to human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) are found in the serum of the majority of infected individuals, and inhibition of RT polymerase activity by HIV-1-positive sera can be demonstrated in vitro. The binding sites of human antibodies on the protein have not yet been identified. We synthesized overlapping peptides covering the entire RT protein of HIV-1 and used them in an enzyme-linked immunosorbent assay system to map the reactivities of HIV-1 and HIV-2 antibody-positive sera. Two highly antigenic regions were identified by both HIV serotypes. One region was found in the central part of the RT protein (amino acids 261 to 280) and another was found at the carboxy terminus in the RNase H portion of RT (amino acids 517 to 536). Comparison of the serological results with the crystal structure of the RT revealed that the antigenic region in the RNase H portion is located at the surface of the protein. The other antibody-binding site (amino acids 261 to 280) was located in the "thumb" region of the polymerase domain of RT. Polyclonal antibodies to either of the antibody-binding sites do not affect the polymerase activity of the RT protein.

Full text

PDF
588

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Advani M., Imagawa D. T., Lee M. H., Sano K., Morales F., Mitsuyasu R. T., Detels R. Cross-sectional study of reverse transcriptase-inhibiting antibody as a marker of acquired immune deficiency syndrome. J Clin Microbiol. 1989 Jul;27(7):1453–1455. doi: 10.1128/jcm.27.7.1453-1455.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allan J. S., Coligan J. E., Lee T. H., Barin F., Kanki P. J., M'Boup S., McLane M. F., Groopman J. E., Essex M. Immunogenic nature of a Pol gene product of HTLV-III/LAV. Blood. 1987 Jan;69(1):331–333. [PubMed] [Google Scholar]
  3. Asjö B., Ivhed I., Gidlund M., Fuerstenberg S., Fenyö E. M., Nilsson K., Wigzell H. Susceptibility to infection by the human immunodeficiency virus (HIV) correlates with T4 expression in a parental monocytoid cell line and its subclones. Virology. 1987 Apr;157(2):359–365. doi: 10.1016/0042-6822(87)90278-9. [DOI] [PubMed] [Google Scholar]
  4. Basu A., Tirumalai R. S., Modak M. J. Substrate binding in human immunodeficiency virus reverse transcriptase. An analysis of pyridoxal 5'-phosphate sensitivity and identification of lysine 263 in the substrate-binding domain. J Biol Chem. 1989 May 25;264(15):8746–8752. [PubMed] [Google Scholar]
  5. Björling E., Goobar-Larsson L., Utter G., Norrby E., Chiodi F. Four distinct antigenic regions are present in the primary structure of HIV-1 and HIV-2 proteinases. AIDS. 1992 Feb;6(2):157–163. doi: 10.1097/00002030-199202000-00003. [DOI] [PubMed] [Google Scholar]
  6. Boucher C. A., Tersmette M., Lange J. M., Kellam P., de Goede R. E., Mulder J. W., Darby G., Goudsmit J., Larder B. A. Zidovudine sensitivity of human immunodeficiency viruses from high-risk, symptom-free individuals during therapy. Lancet. 1990 Sep 8;336(8715):585–590. doi: 10.1016/0140-6736(90)93391-2. [DOI] [PubMed] [Google Scholar]
  7. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  8. Davies J. F., 2nd, Hostomska Z., Hostomsky Z., Jordan S. R., Matthews D. A. Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. Science. 1991 Apr 5;252(5002):88–95. doi: 10.1126/science.1707186. [DOI] [PubMed] [Google Scholar]
  9. Hansen J., Schulze T., Mellert W., Moelling K. Identification and characterization of HIV-specific RNase H by monoclonal antibody. EMBO J. 1988 Jan;7(1):239–243. doi: 10.1002/j.1460-2075.1988.tb02805.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hansen J., Schulze T., Moelling K. RNase H activity associated with bacterially expressed reverse transcriptase of human T-cell lymphotropic virus III/lymphadenopathy-associated virus. J Biol Chem. 1987 Sep 15;262(26):12393–12396. [PubMed] [Google Scholar]
  11. Houghten R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5131–5135. doi: 10.1073/pnas.82.15.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992 Jun 26;256(5065):1783–1790. doi: 10.1126/science.1377403. [DOI] [PubMed] [Google Scholar]
  13. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  14. Larder B. A., Purifoy D. J., Powell K. L., Darby G. Site-specific mutagenesis of AIDS virus reverse transcriptase. 1987 Jun 25-Jul 1Nature. 327(6124):716–717. doi: 10.1038/327716a0. [DOI] [PubMed] [Google Scholar]
  15. Larder B., Purifoy D., Powell K., Darby G. AIDS virus reverse transcriptase defined by high level expression in Escherichia coli. EMBO J. 1987 Oct;6(10):3133–3137. doi: 10.1002/j.1460-2075.1987.tb02623.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laurence J., Saunders A., Kulkosky J. Characterization and clinical association of antibody inhibitory to HIV reverse transcriptase activity. Science. 1987 Mar 20;235(4795):1501–1504. doi: 10.1126/science.2435004. [DOI] [PubMed] [Google Scholar]
  17. Liu F. T., Zinnecker M., Hamaoka T., Katz D. H. New procedures for preparation and isolation of conjugates of proteins and a synthetic copolymer of D-amino acids and immunochemical characterization of such conjugates. Biochemistry. 1979 Feb 20;18(4):690–693. doi: 10.1021/bi00571a022. [DOI] [PubMed] [Google Scholar]
  18. Mizrahi V., Lazarus G. M., Miles L. M., Meyers C. A., Debouck C. Recombinant HIV-1 reverse transcriptase: purification, primary structure, and polymerase/ribonuclease H activities. Arch Biochem Biophys. 1989 Sep;273(2):347–358. doi: 10.1016/0003-9861(89)90493-1. [DOI] [PubMed] [Google Scholar]
  19. Müller B., Restle T., Kühnel H., Goody R. S. Expression of the heterodimeric form of human immunodeficiency virus type 2 reverse transcriptase in Escherichia coli and characterization of the enzyme. J Biol Chem. 1991 Aug 5;266(22):14709–14713. [PubMed] [Google Scholar]
  20. Müller B., Restle T., Weiss S., Gautel M., Sczakiel G., Goody R. S. Co-expression of the subunits of the heterodimer of HIV-1 reverse transcriptase in Escherichia coli. J Biol Chem. 1989 Aug 25;264(24):13975–13978. [PubMed] [Google Scholar]
  21. Padberg C., Nowlan S., Mermer B. Recombinant polypeptides from the human immunodeficiency virus reverse transcriptase define three epitopes recognized by antibodies in sera from patients with acquired immunodeficiency syndrome. AIDS Res Hum Retroviruses. 1989 Feb;5(1):61–71. doi: 10.1089/aid.1989.5.61. [DOI] [PubMed] [Google Scholar]
  22. Restle T., Müller B., Goody R. S. Dimerization of human immunodeficiency virus type 1 reverse transcriptase. A target for chemotherapeutic intervention. J Biol Chem. 1990 Jun 5;265(16):8986–8988. [PubMed] [Google Scholar]
  23. Sano K., Lee M. H., Morales F., Nishanian P., Fahey J., Detels R., Imagawa D. T. Antibody that inhibits human immunodeficiency virus reverse transcriptase and association with inability to isolate virus. J Clin Microbiol. 1987 Dec;25(12):2415–2417. doi: 10.1128/jcm.25.12.2415-2417.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wolfs T. F., Geelen J. L., Schellekens H., Barin F., Dekker J. T., Goudsmit J. Serum capacity to inhibit reverse transcriptase in vitro distinguishes HIV-1 infection from HIV-2 or SIV infection. AIDS Res Hum Retroviruses. 1989 Oct;5(5):535–540. doi: 10.1089/aid.1989.5.535. [DOI] [PubMed] [Google Scholar]
  25. Wong-Staal F., Shaw G. M., Hahn B. H., Salahuddin S. Z., Popovic M., Markham P., Redfield R., Gallo R. C. Genomic diversity of human T-lymphotropic virus type III (HTLV-III). Science. 1985 Aug 23;229(4715):759–762. doi: 10.1126/science.2992084. [DOI] [PubMed] [Google Scholar]
  26. di Marzo Veronese F., Copeland T. D., DeVico A. L., Rahman R., Oroszlan S., Gallo R. C., Sarngadharan M. G. Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV. Science. 1986 Mar 14;231(4743):1289–1291. doi: 10.1126/science.2418504. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES