Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1993 May;31(5):1034–1039. doi: 10.1128/jcm.31.5.1034-1039.1993

Polymerase chain reaction for detection of measles virus in clinical samples.

H Shimizu 1, C A McCarthy 1, M F Smaron 1, J C Burns 1
PMCID: PMC262876  PMID: 8501204

Abstract

A rapid and sensitive one-step reverse transcription polymerase chain reaction assay was developed to detect measles virus (MV) in nasal aspirates from patients with suspected MV infection. Oligonucleotide primers and probe were targeted to highly conserved regions of the matrix gene. Assay conditions were optimized to allow detection of as little as 1 PFU of an MV stock whose titer was known. Extraction of RNA from 38 nasal aspirates and then reverse transcription and MV matrix gene amplification yielded a polymerase chain reaction product of the predicted size in 14 of 14 MV culture-positive patients. Matrix gene amplification provides a rapid, sensitive, and specific supplementary assay to the currently available modalities for MV detection.

Full text

PDF
1034

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballart I., Eschle D., Cattaneo R., Schmid A., Metzler M., Chan J., Pifko-Hirst S., Udem S. A., Billeter M. A. Infectious measles virus from cloned cDNA. EMBO J. 1990 Feb;9(2):379–384. doi: 10.1002/j.1460-2075.1990.tb08121.x. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  2. Bellini W. J., Englund G., Richardson C. D., Rozenblatt S., Lazzarini R. A. Matrix genes of measles virus and canine distemper virus: cloning, nucleotide sequences, and deduced amino acid sequences. J Virol. 1986 May;58(2):408–416. doi: 10.1128/jvi.58.2.408-416.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ben-Ezra J., Johnson D. A., Rossi J., Cook N., Wu A. Effect of fixation on the amplification of nucleic acids from paraffin-embedded material by the polymerase chain reaction. J Histochem Cytochem. 1991 Mar;39(3):351–354. doi: 10.1177/39.3.1704393. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Curran M. D., Rima B. K. Nucleotide sequence of the gene encoding the matrix protein of a recent measles virus isolate. J Gen Virol. 1988 Sep;69(Pt 9):2407–2411. doi: 10.1099/0022-1317-69-9-2407. [DOI] [PubMed] [Google Scholar]
  6. Diallo A. Morbillivirus group: genome organisation and proteins. Vet Microbiol. 1990 Jun;23(1-4):155–163. doi: 10.1016/0378-1135(90)90145-l. [DOI] [PubMed] [Google Scholar]
  7. Eisenstein B. I. The polymerase chain reaction. A new method of using molecular genetics for medical diagnosis. N Engl J Med. 1990 Jan 18;322(3):178–183. doi: 10.1056/NEJM199001183220307. [DOI] [PubMed] [Google Scholar]
  8. Godec M. S., Asher D. M., Swoveland P. T., Eldadah Z. A., Feinstone S. M., Goldfarb L. G., Gibbs C. J., Jr, Gajdusek D. C. Detection of measles virus genomic sequences in SSPE brain tissue by the polymerase chain reaction. J Med Virol. 1990 Apr;30(4):237–244. doi: 10.1002/jmv.1890300402. [DOI] [PubMed] [Google Scholar]
  9. Jackson D. P., Quirke P., Lewis F., Boylston A. W., Sloan J. M., Robertson D., Taylor G. R. Detection of measles virus RNA in paraffin-embedded tissue. Lancet. 1989 Jun 17;1(8651):1391–1391. doi: 10.1016/s0140-6736(89)92837-7. [DOI] [PubMed] [Google Scholar]
  10. Kaplan L. J., Daum R. S., Smaron M., McCarthy C. A. Severe measles in immunocompromised patients. JAMA. 1992 Mar 4;267(9):1237–1241. [PubMed] [Google Scholar]
  11. Kwok S., Kellogg D. E., McKinney N., Spasic D., Goda L., Levenson C., Sninsky J. J. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 1990 Feb 25;18(4):999–1005. doi: 10.1093/nar/18.4.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Longo M. C., Berninger M. S., Hartley J. L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene. 1990 Sep 1;93(1):125–128. doi: 10.1016/0378-1119(90)90145-h. [DOI] [PubMed] [Google Scholar]
  13. Markowitz L. E., Chandler F. W., Roldan E. O., Saldana M. J., Roach K. C., Hutchins S. S., Preblud S. R., Mitchell C. D., Scott G. B. Fatal measles pneumonia without rash in a child with AIDS. J Infect Dis. 1988 Aug;158(2):480–483. doi: 10.1093/infdis/158.2.480. [DOI] [PubMed] [Google Scholar]
  14. Minnich L. L., Goodenough F., Ray C. G. Use of immunofluorescence to identify measles virus infections. J Clin Microbiol. 1991 Jun;29(6):1148–1150. doi: 10.1128/jcm.29.6.1148-1150.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ralston S. H., Digiovine F. S., Gallacher S. J., Boyle I. T., Duff G. W. Failure to detect paramyxovirus sequences in Paget's disease of bone using the polymerase chain reaction. J Bone Miner Res. 1991 Nov;6(11):1243–1248. doi: 10.1002/jbmr.5650061115. [DOI] [PubMed] [Google Scholar]
  16. Rota J. S., Hummel K. B., Rota P. A., Bellini W. J. Genetic variability of the glycoprotein genes of current wild-type measles isolates. Virology. 1992 May;188(1):135–142. doi: 10.1016/0042-6822(92)90742-8. [DOI] [PubMed] [Google Scholar]
  17. Rozenblatt S., Eizenberg O., Ben-Levy R., Lavie V., Bellini W. J. Sequence homology within the morbilliviruses. J Virol. 1985 Feb;53(2):684–690. doi: 10.1128/jvi.53.2.684-690.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Saiki R. K., Bugawan T. L., Horn G. T., Mullis K. B., Erlich H. A. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature. 1986 Nov 13;324(6093):163–166. doi: 10.1038/324163a0. [DOI] [PubMed] [Google Scholar]
  19. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  20. Schmid A., Spielhofer P., Cattaneo R., Baczko K., ter Meulen V., Billeter M. A. Subacute sclerosing panencephalitis is typically characterized by alterations in the fusion protein cytoplasmic domain of the persisting measles virus. Virology. 1992 Jun;188(2):910–915. doi: 10.1016/0042-6822(92)90552-z. [DOI] [PubMed] [Google Scholar]
  21. Schulz T. F., Hoad J. G., Whitby D., Tizard E. J., Dillon M. J., Weiss R. A. A measles virus isolate from a child with Kawasaki disease: sequence comparison with contemporaneous isolates from 'classical' cases. J Gen Virol. 1992 Jun;73(Pt 6):1581–1586. doi: 10.1099/0022-1317-73-6-1581. [DOI] [PubMed] [Google Scholar]
  22. Smaron M. F., Saxon E., Wood L., McCarthy C., Morello J. A. Diagnosis of measles by fluorescent antibody and culture of nasopharyngeal secretions. J Virol Methods. 1991 Jun;33(1-2):223–229. doi: 10.1016/0166-0934(91)90022-r. [DOI] [PubMed] [Google Scholar]
  23. Taylor M. J., Godfrey E., Baczko K., ter Meulen V., Wild T. F., Rima B. K. Identification of several different lineages of measles virus. J Gen Virol. 1991 Jan;72(Pt 1):83–88. doi: 10.1099/0022-1317-72-1-83. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES