Abstract
A rapid colorimetric technique for in vitro quantitation of Legionella pneumophila intracellular proliferation in macrophages is described. The assay is based on the electron transport activity of metabolically active L. pneumophila. The yellow tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) is cleaved by the mitochondrial activity of viable L. pneumophila, forming a dark formazan derivative with an absorption spectrum different from that of the native compound. The MTT method for measuring intracellular growth of L. pneumophila closely correlated with the CFU assay. The ability of macrophages from the A/J mouse strain to support intracellular growth of L. pneumophila and the ability of desferrioxamine to restrict L. pneumophila intracellular proliferation were confirmed by both methods. The MTT assay offers the advantages of rapidity, simplicity, and cost efficiency over the CFU assay, since it can be performed in the same flat-bottom microtiter plate with measurement in an enzyme-linked immunosorbent assay reader, allowing efficient processing of large numbers of samples.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Egawa K., Klein T. W., Yamamoto Y., Newton C. A., Friedman H. Enhanced growth restriction of Legionella pneumophila in endotoxin-treated macrophages. Proc Soc Exp Biol Med. 1992 Jul;200(3):338–342. doi: 10.3181/00379727-200-43439. [DOI] [PubMed] [Google Scholar]
- Horwitz M. A., Silverstein S. C. Activated human monocytes inhibit the intracellular multiplication of Legionnaires' disease bacteria. J Exp Med. 1981 Nov 1;154(5):1618–1635. doi: 10.1084/jem.154.5.1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horwitz M. A., Silverstein S. C. Legionnaires' disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes. J Clin Invest. 1980 Sep;66(3):441–450. doi: 10.1172/JCI109874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein T. W., Yamamoto Y., Brown H. K., Friedman H. Interferon-gamma induced resistance to Legionella pneumophila in susceptible A/J mouse macrophages. J Leukoc Biol. 1991 Jan;49(1):98–103. doi: 10.1002/jlb.49.1.98. [DOI] [PubMed] [Google Scholar]
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
- Reznicek M., Bale M., Pfaller M. Application of DNA probes to antimicrobial susceptibility testing of Legionella pneumophila. Diagn Microbiol Infect Dis. 1991 Jan-Feb;14(1):7–10. doi: 10.1016/0732-8893(91)90079-u. [DOI] [PubMed] [Google Scholar]
- Yamamoto Y., Klein T. W., Newton C. A., Widen R., Friedman H. Growth of Legionella pneumophila in thioglycolate-elicited peritoneal macrophages from A/J mice. Infect Immun. 1988 Feb;56(2):370–375. doi: 10.1128/iai.56.2.370-375.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmermann R., Iturriaga R., Becker-Birck J. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl Environ Microbiol. 1978 Dec;36(6):926–935. doi: 10.1128/aem.36.6.926-935.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]