Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1994 Feb;32(2):525–527. doi: 10.1128/jcm.32.2.525-527.1994

Suppression of fungal growth exhibited by Pseudomonas aeruginosa.

J R Kerr 1
PMCID: PMC263067  PMID: 8150966

Abstract

Three surgery patients were monitored postoperatively, with particular reference to lung infection. In each case there was a clinical impression that Pseudomonas aeruginosa suppressed the growth of Candida albicans in patients with clinically significant lung infections from whom both of these organisms were isolated from serial sputum samples. Regrowth of C. albicans after P. aeruginosa eradication occurred in two patients, despite fluconazole therapy, to which both C. albicans isolates were susceptible. In all three patients, the strain of P. aeruginosa was found to inhibit the growth of the corresponding C. albicans strain in vitro. Further in vitro susceptibility studies revealed significant inhibition by 10 strains of P. aeruginosa of 11 strains of fungi known to infect humans; these were Candida krusei, Candida keyfr, Candida guillermondii, Candida tropicalis, Candida lusitaniae, Candida parapsilosis, Candida pseudotropicalis, Candida albicans, Torulopsis glabrata, Saccharomyces cerevisiae, and Aspergillus fumigatus.

Full text

PDF
525

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arima K., Imanaka H., Kousaka M., Fukuda A., Tamura G. Studies on pyrrolnitrin, a new antibiotic. I. Isolation and properties of pyrrolnitrin. J Antibiot (Tokyo) 1965 Sep;18(5):201–204. [PubMed] [Google Scholar]
  2. Cohen R., Roth F. J., Delgado E., Ahearn D. G., Kalser M. H. Fungal flora of the normal human small and large intestine. N Engl J Med. 1969 Mar 20;280(12):638–641. doi: 10.1056/NEJM196903202801204. [DOI] [PubMed] [Google Scholar]
  3. Edwards J. E., Jr Invasive candida infections--evolution of a fungal pathogen. N Engl J Med. 1991 Apr 11;324(15):1060–1062. doi: 10.1056/NEJM199104113241511. [DOI] [PubMed] [Google Scholar]
  4. Elander R. P., Mabe J. A., Hamill R. H., Gorman M. Metabolism of tryptophans by Pseudomonas aureofaciens. VI. Production of pyrrolnitrin by selected Pseudomonas species. Appl Microbiol. 1968 May;16(5):753–758. doi: 10.1128/am.16.5.753-758.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evans L. R., Linker A. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J Bacteriol. 1973 Nov;116(2):915–924. doi: 10.1128/jb.116.2.915-924.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gillies R. R., Govan J. R. Typing of Pseudomonas pyocyanea by pyocine production. J Pathol Bacteriol. 1966 Apr;91(2):339–345. doi: 10.1002/path.1700910207. [DOI] [PubMed] [Google Scholar]
  7. Gordee R. S., Matthews T. R. Evaluation of the in vitro and in vivo antifungal activity of pyrrolnitrin. Antimicrob Agents Chemother (Bethesda) 1967;7:378–387. [PubMed] [Google Scholar]
  8. Gordee R. S., Matthews T. R. Systemic antifungal activity of pyrrolnitrin. Appl Microbiol. 1969 May;17(5):690–694. doi: 10.1128/am.17.5.690-694.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Govan J. R., Fyfe J. A., McMillan C. The instability of mucoid Pseudomonas aeruginosa: fluctuation test and improved stability of the mucoid form in shaken culture. J Gen Microbiol. 1979 Jan;110(1):229–232. doi: 10.1099/00221287-110-1-229. [DOI] [PubMed] [Google Scholar]
  10. Jayaswal R. K., Fernandez M. A., Schroeder R. G. Isolation and characterization of a pseudomonas strain that restricts growth of various phytopathogenic fungi. Appl Environ Microbiol. 1990 Apr;56(4):1053–1058. doi: 10.1128/aem.56.4.1053-1058.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leisinger T., Margraff R. Secondary metabolites of the fluorescent pseudomonads. Microbiol Rev. 1979 Sep;43(3):422–442. doi: 10.1128/mr.43.3.422-442.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meunier F. Candidiasis. Eur J Clin Microbiol Infect Dis. 1989 May;8(5):438–447. doi: 10.1007/BF01964058. [DOI] [PubMed] [Google Scholar]
  13. Tripathi R. K., Gottlieb D. Mechanism of action of the antifungal antibiotic pyrrolnitrin. J Bacteriol. 1969 Oct;100(1):310–318. doi: 10.1128/jb.100.1.310-318.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Upadhyay R. S., Visintin L., Jayaswal R. K. Environmental factors affecting the antagonism of Pseudomonas cepacia against Trichoderma viride. Can J Microbiol. 1991 Nov;37(11):880–884. doi: 10.1139/m91-152. [DOI] [PubMed] [Google Scholar]
  15. Zhou P., Mocek U., Siesel B., Floss H. G. Biosynthesis of pyrrolnitrin. Incorporation of 13C, 15N double-labelled D- and L-tryptophan. J Basic Microbiol. 1992;32(3):209–214. doi: 10.1002/jobm.3620320312. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES