Abstract
One hundred forty-five cultures of Clostridium difficile, including strains from an apparent nosocomial outbreak of infection, were characterized by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell proteins. Each protein pattern was characterized by the presence of one to three dense bands which were highly reproducible. The first 100 strains (in chronological order) were used as the basis for a numerical analysis which divided the strains into 17 phenons (EP types 1 to 17). The protein patterns of the remaining 45 strains were identified to type by comparing their individual patterns against a data base made up of the protein patterns of the first 100 strains. EP type 1 was the most common, with 70 of 139 (50%) patient isolates having this pattern type, and it accounted for 26 of 35 strains (74%) from patients in a medical teaching ward from which the outbreak was believed to have originated. This type was also found as a high proportion of isolations in a number of other medical and oncology wards, but the majority of these isolates occurred subsequent to the isolations on the initial outbreak ward. This technique can therefore provide a method for tracing the possible spread of epidemic strains in hospitals and other institutions and may contribute to a better understanding of the epidemiology of C. difficile.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartlett J. G. Antibiotic-associated diarrhea. Clin Infect Dis. 1992 Oct;15(4):573–581. doi: 10.1093/clind/15.4.573. [DOI] [PubMed] [Google Scholar]
- Bartlett J. G. Clostridium difficile: clinical considerations. Rev Infect Dis. 1990 Jan-Feb;12 (Suppl 2):S243–S251. doi: 10.1093/clinids/12.supplement_2.s243. [DOI] [PubMed] [Google Scholar]
- Bowman R. A., O'Neill G. L., Riley T. V. Non-radioactive restriction fragment length polymorphism (RFLP) typing of Clostridium difficile. FEMS Microbiol Lett. 1991 Apr 15;63(2-3):269–272. doi: 10.1016/0378-1097(91)90097-t. [DOI] [PubMed] [Google Scholar]
- Degl'Innocenti R., De Santis M., Berdondini I., Dei R. Outbreak of Clostridium difficile diarrhoea in an orthopaedic unit: evidence by phage-typing for cross-infection. J Hosp Infect. 1989 Apr;13(3):309–314. doi: 10.1016/0195-6701(89)90012-1. [DOI] [PubMed] [Google Scholar]
- Delmée M., Avesani V. Correlation between serogroup and susceptibility to chloramphenicol, clindamycin, erythromycin, rifampicin and tetracycline among 308 isolates of Clostridium difficile. J Antimicrob Chemother. 1988 Sep;22(3):325–331. doi: 10.1093/jac/22.3.325. [DOI] [PubMed] [Google Scholar]
- Delmée M., Laroche Y., Avesani V., Cornelis G. Comparison of serogrouping and polyacrylamide gel electrophoresis for typing Clostridium difficile. J Clin Microbiol. 1986 Dec;24(6):991–994. doi: 10.1128/jcm.24.6.991-994.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devlin H. R., Au W., Foux L., Bradbury W. C. Restriction endonuclease analysis of nosocomial isolates of Clostridium difficile. J Clin Microbiol. 1987 Nov;25(11):2168–2172. doi: 10.1128/jcm.25.11.2168-2172.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donta S. T., Shaffer S. J. Effects of Clostridium difficile toxin on tissue-cultured cells. J Infect Dis. 1980 Feb;141(2):218–222. doi: 10.1093/infdis/141.2.218. [DOI] [PubMed] [Google Scholar]
- Donta S. T., Sullivan N., Wilkins T. D. Differential effects of Clostridium difficile toxins on tissue-cultured cells. J Clin Microbiol. 1982 Jun;15(6):1157–1158. doi: 10.1128/jcm.15.6.1157-1158.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehret W., Turba M., Pfaller P., Heizmann W., Ruckdeschel G. Computer-aided densitometric analysis of protein patterns of Clostridium difficile. Eur J Clin Microbiol Infect Dis. 1988 Apr;7(2):285–290. doi: 10.1007/BF01963103. [DOI] [PubMed] [Google Scholar]
- George W. L., Sutter V. L., Citron D., Finegold S. M. Selective and differential medium for isolation of Clostridium difficile. J Clin Microbiol. 1979 Feb;9(2):214–219. doi: 10.1128/jcm.9.2.214-219.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heard S. R., O'Farrell S., Holland D., Crook S., Barnett M. J., Tabaqchali S. The epidemiology of Clostridium difficile with use of a typing scheme: nosocomial acquisition and cross-infection among immunocompromised patients. J Infect Dis. 1986 Jan;153(1):159–162. doi: 10.1093/infdis/153.1.159. [DOI] [PubMed] [Google Scholar]
- Johnson S., Adelmann A., Clabots C. R., Peterson L. R., Gerding D. N. Recurrences of Clostridium difficile diarrhea not caused by the original infecting organism. J Infect Dis. 1989 Feb;159(2):340–343. doi: 10.1093/infdis/159.2.340. [DOI] [PubMed] [Google Scholar]
- Kaatz G. W., Gitlin S. D., Schaberg D. R., Wilson K. H., Kauffman C. A., Seo S. M., Fekety R. Acquisition of Clostridium difficile from the hospital environment. Am J Epidemiol. 1988 Jun;127(6):1289–1294. doi: 10.1093/oxfordjournals.aje.a114921. [DOI] [PubMed] [Google Scholar]
- Kamthan A. G., Bruckner H. W., Hirschman S. Z., Agus S. G. Clostridium difficile diarrhea induced by cancer chemotherapy. Arch Intern Med. 1992 Aug;152(8):1715–1717. [PubMed] [Google Scholar]
- Kato H., Cavallaro J. J., Kato N., Bartley S. L., Killgore G. E., Watanabe K., Ueno K. Typing of Clostridium difficile by western immunoblotting with 10 different antisera. J Clin Microbiol. 1993 Feb;31(2):413–415. doi: 10.1128/jcm.31.2.413-415.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuijper E. J., Oudbier J. H., Stuifbergen W. N., Jansz A., Zanen H. C. Application of whole-cell DNA restriction endonuclease profiles to the epidemiology of Clostridium difficile-induced diarrhea. J Clin Microbiol. 1987 Apr;25(4):751–753. doi: 10.1128/jcm.25.4.751-753.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McFarland L. V., Elmer G. W., Stamm W. E., Mulligan M. E. Correlation of immunoblot type, enterotoxin production, and cytotoxin production with clinical manifestations of Clostridium difficile infection in a cohort of hospitalized patients. Infect Immun. 1991 Jul;59(7):2456–2462. doi: 10.1128/iai.59.7.2456-2462.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McFarland L. V., Mulligan M. E., Kwok R. Y., Stamm W. E. Nosocomial acquisition of Clostridium difficile infection. N Engl J Med. 1989 Jan 26;320(4):204–210. doi: 10.1056/NEJM198901263200402. [DOI] [PubMed] [Google Scholar]
- McFarland L. V., Stamm W. E. Review of Clostridium difficile-associated diseases. Am J Infect Control. 1986 Jun;14(3):99–109. doi: 10.1016/0196-6553(86)90018-0. [DOI] [PubMed] [Google Scholar]
- McKay I., Coia J. E., Poxton I. R. Typing of Clostridium difficile causing diarrhoea in an orthopaedic ward. J Clin Pathol. 1989 May;42(5):511–515. doi: 10.1136/jcp.42.5.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miscopein G., Delmée M., Sedallian A. Clostridium difficile: mise au point d'une méthode de typage pour les études épidémiologiques. Pathol Biol (Paris) 1991 May;39(5):551–554. [PubMed] [Google Scholar]
- O'Neill G. L., Beaman M. H., Riley T. V. Relapse versus reinfection with Clostridium difficile. Epidemiol Infect. 1991 Dec;107(3):627–635. doi: 10.1017/s0950268800049323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pantosti A., Cerquetti M., Gianfrilli P. M. Electrophoretic characterization of Clostridium difficile strains isolated from antibiotic-associated colitis and other conditions. J Clin Microbiol. 1988 Mar;26(3):540–543. doi: 10.1128/jcm.26.3.540-543.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poxton I. R., Aronsson B., Möllby R., Nord C. E., Collee J. G. Immunochemical fingerprinting of Clostridium difficile strains isolated from an outbreak of antibiotic-associated colitis and diarrhoea. J Med Microbiol. 1984 Jun;17(3):317–324. doi: 10.1099/00222615-17-3-317. [DOI] [PubMed] [Google Scholar]
- Sell T. L., Schaberg D. R., Fekety F. R. Bacteriophage and bacteriocin typing scheme for Clostridium difficile. J Clin Microbiol. 1983 Jun;17(6):1148–1152. doi: 10.1128/jcm.17.6.1148-1152.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp J., Poxton I. R. An immunochemical method for fingerprinting Clostridium difficile. J Immunol Methods. 1985 Nov 7;83(2):241–248. doi: 10.1016/0022-1759(85)90246-7. [DOI] [PubMed] [Google Scholar]
- Tabaqchali S., Holland D., O'Farrell S., Silman R. Typing scheme for Clostridium difficile: its application in clinical and epidemiological studies. Lancet. 1984 Apr 28;1(8383):935–938. doi: 10.1016/s0140-6736(84)92392-4. [DOI] [PubMed] [Google Scholar]
- Tabaqchali S., Wilks M. Epidemiological aspects of infections caused by Bacteroides fragilis and Clostridium difficile. Eur J Clin Microbiol Infect Dis. 1992 Nov;11(11):1049–1057. doi: 10.1007/BF01967798. [DOI] [PubMed] [Google Scholar]
- Testore G. P., Pantosti A., Cerquetti M., Babudieri S., Panichi G., Gianfrilli P. M. Evidence for cross-infection in an outbreak of Clostridium difficile-associated diarrhoea in a surgical unit. J Med Microbiol. 1988 Jun;26(2):125–128. doi: 10.1099/00222615-26-2-125. [DOI] [PubMed] [Google Scholar]
- Toma S., Lesiak G., Magus M., Lo H. L., Delmée M. Serotyping of Clostridium difficile. J Clin Microbiol. 1988 Mar;26(3):426–428. doi: 10.1128/jcm.26.3.426-428.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wren B., Heard S. R., Tabaqchali S. Association between production of toxins A and B and types of Clostridium difficile. J Clin Pathol. 1987 Dec;40(12):1397–1401. doi: 10.1136/jcp.40.12.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]

