Abstract
Many clinical laboratories have problems detecting extended-spectrum beta-lactamases (ESBLs) and plasmid-mediated AmpC beta-lactamases. Confusion exists about the importance of these resistance mechanisms, optimal test methods, and appropriate reporting conventions. Failure to detect these enzymes has contributed to their uncontrolled spread and sometimes to therapeutic failures. Although National Committee for Clinical Laboratory Standards recommendations exist for detecting ESBL- producing isolates of Escherichia coli and Klebsiella spp., no recommendations exist for detecting ESBLs in other organisms or for detecting plasmid-mediated AmpC beta-lactamases in any organisms. Clinical laboratories need to have adequate funding, equipment, and expertise to provide a rapid and clinically relevant antibiotic testing service in centers where these resistance mechanisms are encountered.
Full Text
The Full Text of this article is available as a PDF (54.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babini G. S., Livermore D. M. Antimicrobial resistance amongst Klebsiella spp. collected from intensive care units in Southern and Western Europe in 1997-1998. J Antimicrob Chemother. 2000 Feb;45(2):183–189. doi: 10.1093/jac/45.2.183. [DOI] [PubMed] [Google Scholar]
- Barnaud G., Arlet G., Verdet C., Gaillot O., Lagrange P. H., Philippon A. Salmonella enteritidis: AmpC plasmid-mediated inducible beta-lactamase (DHA-1) with an ampR gene from Morganella morganii. Antimicrob Agents Chemother. 1998 Sep;42(9):2352–2358. doi: 10.1128/aac.42.9.2352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bauernfeind A., Chong Y., Lee K. Plasmid-encoded AmpC beta-lactamases: how far have we gone 10 years after the discovery? Yonsei Med J. 1998 Dec;39(6):520–525. doi: 10.3349/ymj.1998.39.6.520. [DOI] [PubMed] [Google Scholar]
- Bauernfeind A., Chong Y., Schweighart S. Extended broad spectrum beta-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection. 1989 Sep-Oct;17(5):316–321. doi: 10.1007/BF01650718. [DOI] [PubMed] [Google Scholar]
- Brun-Buisson C., Legrand P., Philippon A., Montravers F., Ansquer M., Duval J. Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae. Lancet. 1987 Aug 8;2(8554):302–306. doi: 10.1016/s0140-6736(87)90891-9. [DOI] [PubMed] [Google Scholar]
- Casellas J. M., Goldberg M. Incidence of strains producing extended spectrum beta-lactamases in Argentina. Infection. 1989 Nov-Dec;17(6):434–436. doi: 10.1007/BF01645567. [DOI] [PubMed] [Google Scholar]
- Fournier B., Roy P. H. Variability of chromosomally encoded beta-lactamases from Klebsiella oxytoca. Antimicrob Agents Chemother. 1997 Aug;41(8):1641–1648. doi: 10.1128/aac.41.8.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gazouli M., Tzouvelekis L. S., Prinarakis E., Miriagou V., Tzelepi E. Transferable cefoxitin resistance in enterobacteria from Greek hospitals and characterization of a plasmid-mediated group 1 beta-lactamase (LAT-2). Antimicrob Agents Chemother. 1996 Jul;40(7):1736–1740. doi: 10.1128/aac.40.7.1736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goussard S., Courvalin P. Updated sequence information for TEM beta-lactamase genes. Antimicrob Agents Chemother. 1999 Feb;43(2):367–370. doi: 10.1128/aac.43.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanson N. D., Thomson K. S., Moland E. S., Sanders C. C., Berthold G., Penn R. G. Molecular characterization of a multiply resistant Klebsiella pneumoniae encoding ESBLs and a plasmid-mediated AmpC. J Antimicrob Chemother. 1999 Sep;44(3):377–380. doi: 10.1093/jac/44.3.377. [DOI] [PubMed] [Google Scholar]
- Heritage J., M'Zali F. H., Gascoyne-Binzi D., Hawkey P. M. Evolution and spread of SHV extended-spectrum beta-lactamases in gram-negative bacteria. J Antimicrob Chemother. 1999 Sep;44(3):309–318. doi: 10.1093/jac/44.3.309. [DOI] [PubMed] [Google Scholar]
- Jacoby G. A., Medeiros A. A. More extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1991 Sep;35(9):1697–1704. doi: 10.1128/aac.35.9.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarlier V., Nicolas M. H., Fournier G., Philippon A. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis. 1988 Jul-Aug;10(4):867–878. doi: 10.1093/clinids/10.4.867. [DOI] [PubMed] [Google Scholar]
- Karas J. A., Pillay D. G., Muckart D., Sturm A. W. Treatment failure due to extended spectrum beta-lactamase. J Antimicrob Chemother. 1996 Jan;37(1):203–204. doi: 10.1093/jac/37.1.203. [DOI] [PubMed] [Google Scholar]
- Knothe H., Shah P., Krcmery V., Antal M., Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection. 1983 Nov-Dec;11(6):315–317. doi: 10.1007/BF01641355. [DOI] [PubMed] [Google Scholar]
- Liu P. Y., Gur D., Hall L. M., Livermore D. M. Survey of the prevalence of beta-lactamases amongst 1000 gram-negative bacilli isolated consecutively at the Royal London Hospital. J Antimicrob Chemother. 1992 Oct;30(4):429–447. doi: 10.1093/jac/30.4.429. [DOI] [PubMed] [Google Scholar]
- Livermore D. M. beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995 Oct;8(4):557–584. doi: 10.1128/cmr.8.4.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchandin H., Carriere C., Sirot D., Pierre H. J., Darbas H. TEM-24 produced by four different species of Enterobacteriaceae, including Providencia rettgeri, in a single patient. Antimicrob Agents Chemother. 1999 Aug;43(8):2069–2073. doi: 10.1128/aac.43.8.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mugnier P., Dubrous P., Casin I., Arlet G., Collatz E. A TEM-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1996 Nov;40(11):2488–2493. doi: 10.1128/aac.40.11.2488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palzkill T., Thomson K. S., Sanders C. C., Moland E. S., Huang W., Milligan T. W. New variant of TEM-10 beta-lactamase gene produced by a clinical isolate of proteus mirabilis. Antimicrob Agents Chemother. 1995 May;39(5):1199–1200. doi: 10.1128/aac.39.5.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papanicolaou G. A., Medeiros A. A., Jacoby G. A. Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1990 Nov;34(11):2200–2209. doi: 10.1128/aac.34.11.2200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paterson D. L., Yu V. L. Extended-spectrum beta-lactamases: a call for improved detection and control. Clin Infect Dis. 1999 Dec;29(6):1419–1422. doi: 10.1086/313559. [DOI] [PubMed] [Google Scholar]
- Philippon A., Arlet G., Lagrange P. H. Origin and impact of plasmid-mediated extended-spectrum beta-lactamases. Eur J Clin Microbiol Infect Dis. 1994;13 (Suppl 1):S17–S29. doi: 10.1007/BF02390681. [DOI] [PubMed] [Google Scholar]
- Philippon A., Labia R., Jacoby G. Extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1989 Aug;33(8):1131–1136. doi: 10.1128/aac.33.8.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pörnull K. J., Rodrigo G., Dornbusch K. Production of a plasmid mediated AmpC-like beta-lactamase by a Klebsiella pneumoniae septicaemia isolate. J Antimicrob Chemother. 1994 Dec;34(6):943–954. doi: 10.1093/jac/34.6.943. [DOI] [PubMed] [Google Scholar]
- Reig R., Roy C., Hermida M., Teruel D., Coira A. A survey of beta-lactamases from 618 isolates of Klebsiella spp. J Antimicrob Chemother. 1993 Jan;31(1):29–35. doi: 10.1093/jac/31.1.29. [DOI] [PubMed] [Google Scholar]
- Rice L. B., Eckstein E. C., DeVente J., Shlaes D. M. Ceftazidime-resistant Klebsiella pneumoniae isolates recovered at the Cleveland Department of Veterans Affairs Medical Center. Clin Infect Dis. 1996 Jul;23(1):118–124. doi: 10.1093/clinids/23.1.118. [DOI] [PubMed] [Google Scholar]
- Sanders C. C., Iaconis J. P., Bodey G. P., Samonis G. Resistance to ticarcillin-potassium clavulanate among clinical isolates of the family Enterobacteriaceae: role of PSE-1 beta-lactamase and high levels of TEM-1 and SHV-1 and problems with false susceptibility in disk diffusion tests. Antimicrob Agents Chemother. 1988 Sep;32(9):1365–1369. doi: 10.1128/aac.32.9.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tenover F. C., Mohammed M. J., Gorton T. S., Dembek Z. F. Detection and reporting of organisms producing extended-spectrum beta-lactamases: survey of laboratories in Connecticut. J Clin Microbiol. 1999 Dec;37(12):4065–4070. doi: 10.1128/jcm.37.12.4065-4070.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomson K. S., Prevan A. M., Sanders C. C. Novel plasmid-mediated beta-lactamases in enterobacteriaceae: emerging problems for new beta-lactam antibiotics. Curr Clin Top Infect Dis. 1996;16:151–163. [PubMed] [Google Scholar]
- Thomson K. S., Sanders C. C. Detection of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae: comparison of the double-disk and three-dimensional tests. Antimicrob Agents Chemother. 1992 Sep;36(9):1877–1882. doi: 10.1128/aac.36.9.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomson K. S., Sanders C. C., Moland E. S. Use of microdilution panels with and without beta-lactamase inhibitors as a phenotypic test for beta-lactamase production among Escherichia coli, Klebsiella spp., Enterobacter spp., Citrobacter freundii, and Serratia marcescens. Antimicrob Agents Chemother. 1999 Jun;43(6):1393–1400. doi: 10.1128/aac.43.6.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomson Kenneth S., Sanders Christine C. A simple and reliable method to screen isolates of Escherichia coli and Klebsiella pneumoniae for the production of TEM- and SHV-derived extended-spectrum beta-lactamases. Clin Microbiol Infect. 1997;3(5):549–554. doi: 10.1111/j.1469-0691.1997.tb00306.x. [DOI] [PubMed] [Google Scholar]
- Tzouvelekis L. S., Vatopoulos A. C., Katsanis G., Tzelepi E. Rare case of failure by an automated system to detect extended-spectrum beta-lactamase in a cephalosporin-resistant Klebsiella pneumoniae isolate. J Clin Microbiol. 1999 Jul;37(7):2388–2388. doi: 10.1128/jcm.37.7.2388-2388.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venezia R. A., Scarano F. J., Preston K. E., Steele L. M., Root T. P., Limberger R., Archinal W., Kacica M. A. Molecular epidemiology of an SHV-5 extended-spectrum beta-lactamase in enterobacteriaceae isolated from infants in a neonatal intensive care unit. Clin Infect Dis. 1995 Oct;21(4):915–923. doi: 10.1093/clinids/21.4.915. [DOI] [PubMed] [Google Scholar]
- Winokur P. L., Eidelstain M. V., Stetsiouk O., Stratchounski L., Blahova J., Reshedko G. K., Croco M. A., Hollis R. J., Pfaller M. A., Jones R. N. Russian Klebsiella pneumoniae isolates that express extended-spectrum beta-lactamases. Clin Microbiol Infect. 2000 Feb;6(2):103–108. doi: 10.1046/j.1469-0691.2000.00016-2.x. [DOI] [PubMed] [Google Scholar]