Abstract
Broad use of fluoroquinolones has been followed by emergence of resistance, which has been due mainly to chromosomal mutations in genes encoding the subunits of the drugs' target enzymes, DNA gyrase and topoisomerase IV, and in genes that affect the expression of diffusion channels in the outer membrane and multidrug-resistance efflux systems. Resistance emerged first in species in which single mutations were sufficient to cause clinically important levels of resistance (e.g., Staphylococcus aureus and Pseudomonas aeruginosa). Subsequently, however, resistance has emerged in bacteria such as Campylobacter jejuni, Escherichia coli, and Neisseria gonorrhoeae, in which multiple mutations are required to generate clinically important resistance. In these circumstances, the additional epidemiologic factors of drug use in animals and human-to-human spread appear to have contributed. Resistance in Streptococcus pneumoniae, which is currently low, will require close monitoring as fluoroquinolones are used more extensively for treating respiratory tract infections.
Full Text
The Full Text of this article is available as a PDF (55.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alovero F. L., Pan X. S., Morris J. E., Manzo R. H., Fisher L. M. Engineering the specificity of antibacterial fluoroquinolones: benzenesulfonamide modifications at C-7 of ciprofloxacin change its primary target in Streptococcus pneumoniae from topoisomerase IV to gyrase. Antimicrob Agents Chemother. 2000 Feb;44(2):320–325. doi: 10.1128/aac.44.2.320-325.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartlett J. G., Breiman R. F., Mandell L. A., File T. M., Jr Community-acquired pneumonia in adults: guidelines for management. The Infectious Diseases Society of America. Clin Infect Dis. 1998 Apr;26(4):811–838. doi: 10.1086/513953. [DOI] [PubMed] [Google Scholar]
- Berger J. M., Gamblin S. J., Harrison S. C., Wang J. C. Structure and mechanism of DNA topoisomerase II. Nature. 1996 Jan 18;379(6562):225–232. doi: 10.1038/379225a0. [DOI] [PubMed] [Google Scholar]
- Berger J. M. Type II DNA topoisomerases. Curr Opin Struct Biol. 1998 Feb;8(1):26–32. doi: 10.1016/s0959-440x(98)80006-7. [DOI] [PubMed] [Google Scholar]
- Blanche F., Cameron B., Bernard F. X., Maton L., Manse B., Ferrero L., Ratet N., Lecoq C., Goniot A., Bisch D. Differential behaviors of Staphylococcus aureus and Escherichia coli type II DNA topoisomerases. Antimicrob Agents Chemother. 1996 Dec;40(12):2714–2720. doi: 10.1128/aac.40.12.2714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanco J. E., Blanco M., Mora A., Blanco J. Prevalence of bacterial resistance to quinolones and other antimicrobials among avian Escherichia coli strains isolated from septicemic and healthy chickens in Spain. J Clin Microbiol. 1997 Aug;35(8):2184–2185. doi: 10.1128/jcm.35.8.2184-2185.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumberg H. M., Rimland D., Carroll D. J., Terry P., Wachsmuth I. K. Rapid development of ciprofloxacin resistance in methicillin-susceptible and -resistant Staphylococcus aureus. J Infect Dis. 1991 Jun;163(6):1279–1285. doi: 10.1093/infdis/163.6.1279. [DOI] [PubMed] [Google Scholar]
- Bolhuis H., van Veen H. W., Poolman B., Driessen A. J., Konings W. N. Mechanisms of multidrug transporters. FEMS Microbiol Rev. 1997 Aug;21(1):55–84. doi: 10.1111/j.1574-6976.1997.tb00345.x. [DOI] [PubMed] [Google Scholar]
- Chen D. K., McGeer A., de Azavedo J. C., Low D. E. Decreased susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada. Canadian Bacterial Surveillance Network. N Engl J Med. 1999 Jul 22;341(4):233–239. doi: 10.1056/NEJM199907223410403. [DOI] [PubMed] [Google Scholar]
- Coronado V. G., Edwards J. R., Culver D. H., Gaynes R. P., National Nosocomial Infections Surveillance (NNIS) System Ciprofloxacin resistance among nosocomial Pseudomonas aeruginosa and Staphylococcus aureus in the United States. Infect Control Hosp Epidemiol. 1995 Feb;16(2):71–75. doi: 10.1086/647059. [DOI] [PubMed] [Google Scholar]
- Ena J., Amador C., Martinez C., Ortiz de la Tabla V. Risk factors for acquisition of urinary tract infections caused by ciprofloxacin resistant Escherichia coli. J Urol. 1995 Jan;153(1):117–120. doi: 10.1097/00005392-199501000-00040. [DOI] [PubMed] [Google Scholar]
- Endtz H. P., Ruijs G. J., van Klingeren B., Jansen W. H., van der Reyden T., Mouton R. P. Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J Antimicrob Chemother. 1991 Feb;27(2):199–208. doi: 10.1093/jac/27.2.199. [DOI] [PubMed] [Google Scholar]
- Fox K. K., Knapp J. S., Holmes K. K., Hook E. W., 3rd, Judson F. N., Thompson S. E., Washington J. A., Whittington W. L. Antimicrobial resistance in Neisseria gonorrhoeae in the United States, 1988-1994: the emergence of decreased susceptibility to the fluoroquinolones. J Infect Dis. 1997 Jun;175(6):1396–1403. doi: 10.1086/516472. [DOI] [PubMed] [Google Scholar]
- Garau J., Xercavins M., Rodríguez-Carballeira M., Gómez-Vera J. R., Coll I., Vidal D., Llovet T., Ruíz-Bremón A. Emergence and dissemination of quinolone-resistant Escherichia coli in the community. Antimicrob Agents Chemother. 1999 Nov;43(11):2736–2741. doi: 10.1128/aac.43.11.2736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon S. M., Carlyn C. J., Doyle L. J., Knapp C. C., Longworth D. L., Hall G. S., Washington J. A. The emergence of Neisseria gonorrhoeae with decreased susceptibility to ciprofloxacin in Cleveland, Ohio: epidemiology and risk factors. Ann Intern Med. 1996 Sep 15;125(6):465–470. doi: 10.7326/0003-4819-125-6-199609150-00006. [DOI] [PubMed] [Google Scholar]
- Hendley J. O., Sande M. A., Stewart P. M., Gwaltney J. M., Jr Spread of Streptococcus pneumoniae in families. I. Carriage rates and distribution of types. J Infect Dis. 1975 Jul;132(1):55–61. doi: 10.1093/infdis/132.1.55. [DOI] [PubMed] [Google Scholar]
- Hiasa H., Yousef D. O., Marians K. J. DNA strand cleavage is required for replication fork arrest by a frozen topoisomerase-quinolone-DNA ternary complex. J Biol Chem. 1996 Oct 18;271(42):26424–26429. doi: 10.1074/jbc.271.42.26424. [DOI] [PubMed] [Google Scholar]
- Ho P. L., Que T. L., Tsang D. N., Ng T. K., Chow K. H., Seto W. H. Emergence of fluoroquinolone resistance among multiply resistant strains of Streptococcus pneumoniae in Hong Kong. Antimicrob Agents Chemother. 1999 May;43(5):1310–1313. doi: 10.1128/aac.43.5.1310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hooper D. C. New uses for new and old quinolones and the challenge of resistance. Clin Infect Dis. 2000 Feb;30(2):243–254. doi: 10.1086/313677. [DOI] [PubMed] [Google Scholar]
- Hooper David C. Mechanisms of fluoroquinolone resistance. Drug Resist Updat. 1999 Feb;2(1):38–55. doi: 10.1054/drup.1998.0068. [DOI] [PubMed] [Google Scholar]
- Köhler T., Michea-Hamzehpour M., Plesiat P., Kahr A. L., Pechere J. C. Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1997 Nov;41(11):2540–2543. doi: 10.1128/aac.41.11.2540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Low D. E., Scheld W. M. Strategies for stemming the tide of antimicrobial resistance. JAMA. 1998 Feb 4;279(5):394–395. doi: 10.1001/jama.279.5.394. [DOI] [PubMed] [Google Scholar]
- Markham P. N., Neyfakh A. A. Inhibition of the multidrug transporter NorA prevents emergence of norfloxacin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1996 Nov;40(11):2673–2674. doi: 10.1128/aac.40.11.2673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martínez-Martínez L., Pascual A., Jacoby G. A. Quinolone resistance from a transferable plasmid. Lancet. 1998 Mar 14;351(9105):797–799. doi: 10.1016/S0140-6736(97)07322-4. [DOI] [PubMed] [Google Scholar]
- Morais Cabral J. H., Jackson A. P., Smith C. V., Shikotra N., Maxwell A., Liddington R. C. Crystal structure of the breakage-reunion domain of DNA gyrase. Nature. 1997 Aug 28;388(6645):903–906. doi: 10.1038/42294. [DOI] [PubMed] [Google Scholar]
- Ng E. Y., Trucksis M., Hooper D. C. Quinolone resistance mutations in topoisomerase IV: relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus. Antimicrob Agents Chemother. 1996 Aug;40(8):1881–1888. doi: 10.1128/aac.40.8.1881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikaido H., Thanassi D. G. Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluoroquinolones as examples. Antimicrob Agents Chemother. 1993 Jul;37(7):1393–1399. doi: 10.1128/aac.37.7.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan X. S., Fisher L. M. Streptococcus pneumoniae DNA gyrase and topoisomerase IV: overexpression, purification, and differential inhibition by fluoroquinolones. Antimicrob Agents Chemother. 1999 May;43(5):1129–1136. doi: 10.1128/aac.43.5.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pegues D. A., Colby C., Hibberd P. L., Cohen L. G., Ausubel F. M., Calderwood S. B., Hooper D. C. The epidemiology of resistance to ofloxacin and oxacillin among clinical coagulase-negative staphylococcal isolates: analysis of risk factors and strain types. Clin Infect Dis. 1998 Jan;26(1):72–79. doi: 10.1086/516270. [DOI] [PubMed] [Google Scholar]
- Peña C., Albareda J. M., Pallares R., Pujol M., Tubau F., Ariza J. Relationship between quinolone use and emergence of ciprofloxacin-resistant Escherichia coli in bloodstream infections. Antimicrob Agents Chemother. 1995 Feb;39(2):520–524. doi: 10.1128/aac.39.2.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shea M. E., Hiasa H. Interactions between DNA helicases and frozen topoisomerase IV-quinolone-DNA ternary complexes. J Biol Chem. 1999 Aug 6;274(32):22747–22754. doi: 10.1074/jbc.274.32.22747. [DOI] [PubMed] [Google Scholar]
- Smith K. E., Besser J. M., Hedberg C. W., Leano F. T., Bender J. B., Wicklund J. H., Johnson B. P., Moore K. A., Osterholm M. T. Quinolone-resistant Campylobacter jejuni infections in Minnesota, 1992-1998. Investigation Team. N Engl J Med. 1999 May 20;340(20):1525–1532. doi: 10.1056/NEJM199905203402001. [DOI] [PubMed] [Google Scholar]
- Wetzstein H. G., Schmeer N., Karl W. Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: identification of metabolites. Appl Environ Microbiol. 1997 Nov;63(11):4272–4281. doi: 10.1128/aem.63.11.4272-4281.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willmott C. J., Critchlow S. E., Eperon I. C., Maxwell A. The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. J Mol Biol. 1994 Sep 30;242(4):351–363. doi: 10.1006/jmbi.1994.1586. [DOI] [PubMed] [Google Scholar]
- Willmott C. J., Maxwell A. A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex. Antimicrob Agents Chemother. 1993 Jan;37(1):126–127. doi: 10.1128/aac.37.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida H., Bogaki M., Nakamura S., Ubukata K., Konno M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol. 1990 Dec;172(12):6942–6949. doi: 10.1128/jb.172.12.6942-6949.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
