Skip to main content
Emerging Infectious Diseases logoLink to Emerging Infectious Diseases
. 2001;7(3 Suppl):505–511. doi: 10.3201/eid0707.017704

Epidemiology, evolution, and future of the HIV/AIDS pandemic.

B R Levin 1, J J Bull 1, F M Stewart 1
PMCID: PMC2631842  PMID: 11485642

Abstract

We used mathematical models to address several questions concerning the epidemiologic and evolutionary future of HIV/AIDS in human populations. Our analysis suggests that 1) when HIV first enters a human population, and for many subsequent years, the epidemic is driven by early transmissions, possibly occurring before donors have seroconverted to HIV-positive status; 2) new HIV infections in a subpopulation (risk group) may decline or level off due to the saturation of the susceptible hosts rather than to evolution of the virus or to the efficacy of intervention, education, and public health measures; 3) evolution in humans for resistance to HIV infection or for the infection to engender a lower death rate will require thousands of years and will be achieved only after vast numbers of persons die of AIDS; 4) evolution is unlikely to increase the virulence of HIV; and 5) if HIV chemotherapy reduces the transmissibility of the virus, treating individual patients can reduce the frequency of HIV infections and AIDS deaths in the general population.

Full Text

The Full Text of this article is available as a PDF (457.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. M., Gupta S., May R. M. Potential of community-wide chemotherapy or immunotherapy to control the spread of HIV-1. Nature. 1991 Mar 28;350(6316):356–359. doi: 10.1038/350356a0. [DOI] [PubMed] [Google Scholar]
  2. Broussard S. R., Staprans S. I., White R., Whitehead E. M., Feinberg M. B., Allan J. S. Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease. J Virol. 2001 Mar;75(5):2262–2275. doi: 10.1128/JVI.75.5.2262-2275.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Frost S. D., McLean A. R. Germinal centre destruction as a major pathway of HIV pathogenesis. J Acquir Immune Defic Syndr. 1994 Mar;7(3):236–244. [PubMed] [Google Scholar]
  4. Gao F., Bailes E., Robertson D. L., Chen Y., Rodenburg C. M., Michael S. F., Cummins L. B., Arthur L. O., Peeters M., Shaw G. M. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999 Feb 4;397(6718):436–441. doi: 10.1038/17130. [DOI] [PubMed] [Google Scholar]
  5. Hendel H., Hénon N., Lebuanec H., Lachgar A., Poncelet H., Caillat-Zucman S., Winkler C. A., Smith M. W., Kenefic L., O'Brien S. Distinctive effects of CCR5, CCR2, and SDF1 genetic polymorphisms in AIDS progression. J Acquir Immune Defic Syndr Hum Retrovirol. 1998 Dec 1;19(4):381–386. doi: 10.1097/00042560-199812010-00009. [DOI] [PubMed] [Google Scholar]
  6. Koopman J. S., Jacquez J. A., Welch G. W., Simon C. P., Foxman B., Pollock S. M., Barth-Jones D., Adams A. L., Lange K. The role of early HIV infection in the spread of HIV through populations. J Acquir Immune Defic Syndr Hum Retrovirol. 1997 Mar 1;14(3):249–258. doi: 10.1097/00042560-199703010-00009. [DOI] [PubMed] [Google Scholar]
  7. Korber B., Muldoon M., Theiler J., Gao F., Gupta R., Lapedes A., Hahn B. H., Wolinsky S., Bhattacharya T. Timing the ancestor of the HIV-1 pandemic strains. Science. 2000 Jun 9;288(5472):1789–1796. doi: 10.1126/science.288.5472.1789. [DOI] [PubMed] [Google Scholar]
  8. Levin B. R., Bull J. J. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol. 1994 Mar;2(3):76–81. doi: 10.1016/0966-842x(94)90538-x. [DOI] [PubMed] [Google Scholar]
  9. Levin B. R., Bull J. J., Stewart F. M. The intrinsic rate of increase of HIV/AIDS: epidemiological and evolutionary implications. Math Biosci. 1996 Feb;132(1):69–96. doi: 10.1016/0025-5564(95)00053-4. [DOI] [PubMed] [Google Scholar]
  10. May R. M., Anderson R. M. Parasite-host coevolution. Parasitology. 1990;100 (Suppl):S89–101. doi: 10.1017/s0031182000073042. [DOI] [PubMed] [Google Scholar]
  11. Nowak M. A., Anderson R. M., McLean A. R., Wolfs T. F., Goudsmit J., May R. M. Antigenic diversity thresholds and the development of AIDS. Science. 1991 Nov 15;254(5034):963–969. doi: 10.1126/science.1683006. [DOI] [PubMed] [Google Scholar]
  12. Quinn T. C., Wawer M. J., Sewankambo N., Serwadda D., Li C., Wabwire-Mangen F., Meehan M. O., Lutalo T., Gray R. H. Viral load and heterosexual transmission of human immunodeficiency virus type 1. Rakai Project Study Group. N Engl J Med. 2000 Mar 30;342(13):921–929. doi: 10.1056/NEJM200003303421303. [DOI] [PubMed] [Google Scholar]
  13. Sharp P. M., Bailes E., Robertson D. L., Gao F., Hahn B. H. Origins and evolution of AIDS viruses. Biol Bull. 1999 Jun;196(3):338–342. doi: 10.2307/1542965. [DOI] [PubMed] [Google Scholar]
  14. Stranford S. A., Skurnick J., Louria D., Osmond D., Chang S. Y., Sninsky J., Ferrari G., Weinhold K., Lindquist C., Levy J. A. Lack of infection in HIV-exposed individuals is associated with a strong CD8(+) cell noncytotoxic anti-HIV response. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1030–1035. doi: 10.1073/pnas.96.3.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Emerging Infectious Diseases are provided here courtesy of Centers for Disease Control and Prevention

RESOURCES