Abstract
We constructed a mathematical model to describe the spread of smallpox after a deliberate release of the virus. Assuming 100 persons initially infected and 3 persons infected per infectious person, quarantine alone could stop disease transmission but would require a minimum daily removal rate of 50% of those with overt symptoms. Vaccination would stop the outbreak within 365 days after release only if disease transmission were reduced to <0.85 persons infected per infectious person. A combined vaccination and quarantine campaign could stop an outbreak if a daily quarantine rate of 25% were achieved and vaccination reduced smallpox transmission by > or = 33%. In such a scenario, approximately 4,200 cases would occur and 365 days would be needed to stop the outbreak. Historical data indicate that a median of 2,155 smallpox vaccine doses per case were given to stop outbreaks, implying that a stockpile of 40 million doses should be adequate.
Full Text
The Full Text of this article is available as a PDF (104.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. M., May R. M. Population biology of infectious diseases: Part I. Nature. 1979 Aug 2;280(5721):361–367. doi: 10.1038/280361a0. [DOI] [PubMed] [Google Scholar]
- Arita I., Wickett J., Fenner F. Impact of population density on immunization programmes. J Hyg (Lond) 1986 Jun;96(3):459–466. doi: 10.1017/s0022172400066249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bardi J. Aftermath of a hypothetical smallpox disaster. Emerg Infect Dis. 1999 Jul-Aug;5(4):547–551. doi: 10.3201/eid0504.990417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cliff A. D., Haggett P. Statistical modelling of measles and influenza outbreaks. Stat Methods Med Res. 1993;2(1):43–73. doi: 10.1177/096228029300200104. [DOI] [PubMed] [Google Scholar]
- Henderson D. A., Inglesby T. V., Bartlett J. G., Ascher M. S., Eitzen E., Jahrling P. B., Hauer J., Layton M., McDade J., Osterholm M. T. Smallpox as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. JAMA. 1999 Jun 9;281(22):2127–2137. doi: 10.1001/jama.281.22.2127. [DOI] [PubMed] [Google Scholar]
- Henderson D. A. Smallpox: clinical and epidemiologic features. Emerg Infect Dis. 1999 Jul-Aug;5(4):537–539. doi: 10.3201/eid0504.990415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson D. A. The looming threat of bioterrorism. Science. 1999 Feb 26;283(5406):1279–1282. doi: 10.1126/science.283.5406.1279. [DOI] [PubMed] [Google Scholar]
- Kaufmann A. F., Meltzer M. I., Schmid G. P. The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable? Emerg Infect Dis. 1997 Apr-Jun;3(2):83–94. doi: 10.3201/eid0302.970201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lane J. M., Millar J. D. Routine childhood vaccination against smallpox reconsidered. N Engl J Med. 1969 Nov 27;281(22):1220–1224. doi: 10.1056/NEJM196911272812205. [DOI] [PubMed] [Google Scholar]
- Mack T. M. Smallpox in Europe, 1950-1971. J Infect Dis. 1972 Feb;125(2):161–169. doi: 10.1093/infdis/125.2.161. [DOI] [PubMed] [Google Scholar]
- May R. M., Anderson R. M. Population biology of infectious diseases: Part II. Nature. 1979 Aug 9;280(5722):455–461. doi: 10.1038/280455a0. [DOI] [PubMed] [Google Scholar]
- O'Toole T. Smallpox: An attack scenario. Emerg Infect Dis. 1999 Jul-Aug;5(4):540–546. doi: 10.3201/eid0504.990416. [DOI] [PMC free article] [PubMed] [Google Scholar]
