Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1985 Feb;47(2):508–513. doi: 10.1128/iai.47.2.508-513.1985

Purification and characterization of hyaluronidase from oral Peptostreptococcus species.

Y C Tam, E C Chan
PMCID: PMC263200  PMID: 3881352

Abstract

Hyaluronidase was purified to apparent homogeneity from the spent medium of Peptostreptococcus sp. strain 84H14S. The enzyme was purified 310-fold by ethanol precipitation, gel chromatography, and cation-exchange chromatography with a recovery of 42% of the original activity in the culture medium. The molecular weight of the purified enzyme was estimated to be 160,000 by gel filtration with Sephacryl S-300. Like bacterial mucopolysaccharidases of other sources, the enzyme carried out an eliminative reaction with the substrate, producing 4,5-unsaturated disaccharides as the final end products. Its optimum temperature of activity is 46 degrees C. The purified peptostreptococcal hyaluronidase was different from previously reported bacterial hyaluronidases in several respects. It degraded hyaluronic acid rapidly and also exhibited some activity against chondroitin sulfate A and chondroitin sulfate C. The KmS for hyaluronic acid, chondroitin sulfate A, and chondroitin sulfate C were 0.14, 1.4, and 2.6 mg/ml, respectively. The specific activity of hyaluronidase was much higher than that of any previously purified mucopolysaccharidases. The Vmax against hyaluronic acid reached 400 mmol of product per min per mg of protein at 22 degrees C. The peptostreptococcal hyaluronidase was also unique in that its optimum pH of activity was around neutrality, whereas other bacterial hyaluronidases were most active at acidic pHs.

Full text

PDF
508

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AISENBERG M. S., AISENBERG A. D. Hyaluronidase in periodontal disease. Oral Surg Oral Med Oral Pathol. 1951 Mar;4(3):317–320. doi: 10.1016/0030-4220(51)90298-8. [DOI] [PubMed] [Google Scholar]
  2. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BRUNISH R., MOZERSKY S. M. The characterization of hyaluronidase isolated from Escherichia freundii. J Biol Chem. 1958 Mar;231(1):291–301. [PubMed] [Google Scholar]
  4. Benchetrit L. C., Gray E. D., Edstrom R. D., Wannamaker L. W. Purification and characterization of a hyaluronidase associated with a temperate bacteriophage of group A, type 49 streptococci. J Bacteriol. 1978 Apr;134(1):221–228. doi: 10.1128/jb.134.1.221-228.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DAVIDSON E. A., MEYER K. Chondroitin, a new mucopolysaccharide. J Biol Chem. 1954 Dec;211(2):605–611. [PubMed] [Google Scholar]
  6. Dietrich C. P., Silva M. E., Michelacci Y. M. Sequential degradation of heparin in Flavobacterium heparinum. Purification and properties of five enzymes involved in heparin degradation. J Biol Chem. 1973 Sep 25;248(18):6408–6415. [PubMed] [Google Scholar]
  7. Furlong C. E., Cirakoglu C., Willis R. C., Santy P. A. A simple preparative polyacrylamide disc gel electrophoresis apparatus: purification of three branched-chain amino acid binding proteins from Escherichia coli. Anal Biochem. 1973 Jan;51(1):297–311. doi: 10.1016/0003-2697(73)90478-8. [DOI] [PubMed] [Google Scholar]
  8. Hershon L. E. Elaboration of hyaluronidase and chondroitin sulfatase by microorganisms inhabiting the gingival sulcus: evaluation of a screening method for periodontal disease. J Periodontol. 1971 Jan;42(1):34–36. doi: 10.1902/jop.1971.42.1.34. [DOI] [PubMed] [Google Scholar]
  9. Hill J. Purification and properties of streptococcal hyaluronate lyase. Infect Immun. 1976 Sep;14(3):726–735. doi: 10.1128/iai.14.3.726-735.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LINKER A., MEYER K., HOFFMAN P. The production of unsaturated uronides by bacterial hyaluronidases. J Biol Chem. 1956 Mar;219(1):13–25. [PubMed] [Google Scholar]
  11. Linder L., Nord C. E., Söder P. O. Separation of hyaluronidase from a strain of anaerobic corynebacteria. Scand J Dent Res. 1971;79(7):528–532. doi: 10.1111/j.1600-0722.1971.tb02051.x. [DOI] [PubMed] [Google Scholar]
  12. Linn S., Chan T., Lipeski L., Salyers A. A. Isolation and characterization of two chondroitin lyases from Bacteroides thetaiotaomicron. J Bacteriol. 1983 Nov;156(2):859–866. doi: 10.1128/jb.156.2.859-866.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MAHLER I. R., LISANTI V. F. Hyaluronidase-producing microorganisms from human saliva. Oral Surg Oral Med Oral Pathol. 1952 Nov;5(11):1235–1240. doi: 10.1016/0030-4220(52)90277-6. [DOI] [PubMed] [Google Scholar]
  14. Michelacci Y. M., Dietrich C. P. Isolation and partial characterization of an induced chondroitinase B from Flavobacterium heparinum. Biochem Biophys Res Commun. 1974 Feb 27;56(4):973–980. doi: 10.1016/s0006-291x(74)80284-6. [DOI] [PubMed] [Google Scholar]
  15. Nord C. E. Purification and properties of hyaluronidase from Streptococcus mitis. Odontol Revy. 1971;22(2):125–136. [PubMed] [Google Scholar]
  16. ROGERS H. J. The rate of formation of hyaluronidase, coagulase and total extracellular protein by strains of Staphylococcus aureus. J Gen Microbiol. 1954 Apr;10(2):209–220. doi: 10.1099/00221287-10-2-209. [DOI] [PubMed] [Google Scholar]
  17. ROSAN B., WILLIAMS N. B. HYALURONIDASE PRODUCTION BY ORAL ENTEROCOCCI. Arch Oral Biol. 1964 May-Jun;9:291–298. doi: 10.1016/0003-9969(64)90061-5. [DOI] [PubMed] [Google Scholar]
  18. Rautela G. S., Abramson C. Crystallization and partial characterization of Staphylococcus aureus hyaluronate lyase. Arch Biochem Biophys. 1973 Oct;158(2):687–694. doi: 10.1016/0003-9861(73)90562-6. [DOI] [PubMed] [Google Scholar]
  19. SCHULTZ-HAUDT S. D., SCHERP H. W. Production of hyaluronidase and beta-glucuronidase by Viridans streptococci isolated from gingival crevices. J Dent Res. 1955 Dec;34(6):924–929. doi: 10.1177/00220345550340061901. [DOI] [PubMed] [Google Scholar]
  20. Salyers A. A., O'Brien M. Cellular location of enzymes involved in chondroitin sulfate breakdown by Bacteroides thetaiotaomicron. J Bacteriol. 1980 Aug;143(2):772–780. doi: 10.1128/jb.143.2.772-780.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Silva M. E., Dietrich C. P. Isolation and partial characterization of three induced enzymes from Flavobacterium heparinum involved in the degradation of heparin and heparitin sulfates. Biochem Biophys Res Commun. 1974 Feb 27;56(4):965–972. doi: 10.1016/s0006-291x(74)80283-4. [DOI] [PubMed] [Google Scholar]
  22. Tam Y. C., Chan E. C. Phase variation of hyaluronidase-producing peptostreptococci associated with periodontal disease. J Dent Res. 1983 Sep;62(9):1009–1012. doi: 10.1177/00220345830620090201. [DOI] [PubMed] [Google Scholar]
  23. Tam Y. C., Harvey R. F., Chan E. C. Chondroitin sulfatase--producing and hyaluronidase--producing oral bacteria associated with periodontal disease. J Can Dent Assoc. 1982 Feb;48(2):115–120. [PubMed] [Google Scholar]
  24. Yamagata T., Saito H., Habuchi O., Suzuki S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J Biol Chem. 1968 Apr 10;243(7):1523–1535. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES