Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1984 Aug;45(2):332–338. doi: 10.1128/iai.45.2.332-338.1984

Zinc concentration and survival in rats infected with Salmonella typhimurium.

R Tocco-Bradley, M J Kluger
PMCID: PMC263225  PMID: 6746092

Abstract

Percent survival was measured in male rats injected intravenously with live Salmonella typhimurium when plasma and tissue zinc levels were manipulated. Alzet pumps implanted intraperitoneally infused zinc gluconate or sodium gluconate (controls) from the onset of infection to 72 h postinfection. Plasma and tissue zinc levels were manipulated by infusing (i) 180 micrograms of Zn per h to achieve supranormal plasma and tissue zinc concentrations, (ii) 120 micrograms of Zn per h to prevent the infection-induced fall and to maintain plasma zinc levels at noninfection levels while raising tissue levels above that of infected controls, and (iii) 30 micrograms of Zn per h to increase tissue zinc levels while allowing the infection-induced decrease in plasma zinc. Preventing the fall in plasma zinc while raising liver zinc to supranormal levels enhanced rather than reduced percent survival; raising plasma and liver zinc to supranormal levels returned survival to control levels. Loading the liver with an excess of zinc without changing plasma zinc (30 micrograms of Zn per h) did not increase percent survival in the infected host. Pretreatment or administration of zinc at the time of infection led to increased percent survival compared with administration of zinc 4 h after the onset of infection.

Full text

PDF
332

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baehner R. L. Disorders of leukocytes leading to recurrent infection. Pediatr Clin North Am. 1972 Nov;19(4):935–956. doi: 10.1016/s0031-3955(16)32775-4. [DOI] [PubMed] [Google Scholar]
  2. Beisel W. R. Zinc metabolism in infection. Prog Clin Biol Res. 1977;14:155–179. [PubMed] [Google Scholar]
  3. Bullen J. J., Ward C. G., Wallis S. N. Virulence and the role of iron in Pseudomonas aeruginosa infection. Infect Immun. 1974 Sep;10(3):443–450. doi: 10.1128/iai.10.3.443-450.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COX D. H., HARRIS D. L. Effect of excess dietary zinc on iron and copper in the rat. J Nutr. 1960 Apr;70:514–520. doi: 10.1093/jn/70.4.514. [DOI] [PubMed] [Google Scholar]
  5. Chvapil M. Effect of zinc on cells and biomembranes. Med Clin North Am. 1976 Jul;60(4):799–812. [PubMed] [Google Scholar]
  6. Chvapil M. New aspects in the biological role of zinc: a stabilizer of macromolecules and biological membranes. Life Sci. 1973 Oct 16;13(8):1041–1049. doi: 10.1016/0024-3205(73)90372-x. [DOI] [PubMed] [Google Scholar]
  7. DUNCAN G. D., GRAY L. F., DANIEL L. J. Effect of zinc on cytochrome oxidase activity. Proc Soc Exp Biol Med. 1953 Jul;83(3):625–627. doi: 10.3181/00379727-83-20439. [DOI] [PubMed] [Google Scholar]
  8. Fischer P. W., Giroux A., L'Abbé M. R. The effect of dietary zinc on intestinal copper absorption. Am J Clin Nutr. 1981 Sep;34(9):1670–1675. doi: 10.1093/ajcn/34.9.1670. [DOI] [PubMed] [Google Scholar]
  9. Graham R. C. Disorders of polymorphonuclear leukocytes relevant to infection. Cleve Clin Q. 1975 Spring;42(1):33–47. doi: 10.3949/ccjm.42.1.33. [DOI] [PubMed] [Google Scholar]
  10. Grieger T. A., Kluger M. J. Fever and survival: the role of serum iron. J Physiol. 1978 Jun;279:187–196. doi: 10.1113/jphysiol.1978.sp012339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kasahara M., Anraku Y. Succinate- and NADH oxidase systems of Escherichia coli membrane vesicles. Mechanism of selective inhibition of the systems by zinc ions. J Biochem. 1974 Nov;76(5):967–976. [PubMed] [Google Scholar]
  12. Kluger M. J., Ringler D. H., Anver M. R. Fever and survival. Science. 1975 Apr 11;188(4184):166–168. [PubMed] [Google Scholar]
  13. Kluger M. J., Vaughn L. K. Fever and survival in rabbits infected with Pasteurella multocida. J Physiol. 1978 Sep;282:243–251. doi: 10.1113/jphysiol.1978.sp012460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MAGEE A. C., MATRONE G. Studies on growth, copper metabolism of rats fed high levels of zinc. J Nutr. 1960 Oct;72:233–242. doi: 10.1093/jn/72.2.233. [DOI] [PubMed] [Google Scholar]
  15. Mizel S. B., Farrar J. J. Revised nomenclature for antigen-nonspecific T-cell proliferation and helper factors. Cell Immunol. 1979 Dec;48(2):433–436. doi: 10.1016/0008-8749(79)90139-4. [DOI] [PubMed] [Google Scholar]
  16. Pekarek R. S., Wannemacher R. W., Jr, Beisel W. R. The effect of leukocytic endogenous mediator (LEM) on the tissue distribution of zinc and iron. Proc Soc Exp Biol Med. 1972 Jun;140(2):685–688. doi: 10.3181/00379727-140-36531. [DOI] [PubMed] [Google Scholar]
  17. Powanda M. C. Changes in body balances of nitrogen and other key nutrients: description and underlying mechanisms. Am J Clin Nutr. 1977 Aug;30(8):1254–1268. doi: 10.1093/ajcn/30.8.1254. [DOI] [PubMed] [Google Scholar]
  18. Powanda M. C., Cockerell G. L., Pekarek R. S. Amino acid and zinc movement in relation to protein synthesis early in inflammation. Am J Physiol. 1973 Aug;225(2):399–401. doi: 10.1152/ajplegacy.1973.225.2.399. [DOI] [PubMed] [Google Scholar]
  19. SADASIVAN V. Studies on the biochemistry of zinc. III. Further investigations on the influence of zinc on metabolism. Biochem J. 1952 Nov;52(3):452–455. doi: 10.1042/bj0520452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sandstead H. H., Rinaldi R. A. Impairment of deoxyribonucleic acid synthesis by dietary zinc deficiency in the rat. J Cell Physiol. 1969 Feb;73(1):81–83. doi: 10.1002/jcp.1040730111. [DOI] [PubMed] [Google Scholar]
  21. Singh A. P., Bragg P. D. Inhibition of energization of Salmonella typhimurium membrane by zinc ions. FEBS Lett. 1974 Mar 15;40(1):200–202. doi: 10.1016/0014-5793(74)80927-0. [DOI] [PubMed] [Google Scholar]
  22. Snyder S. L., Walker R. I. Inhibition of lethality in endotoxin-challenged mice treated with zinc chloride. Infect Immun. 1976 Mar;13(3):998–1000. doi: 10.1128/iai.13.3.998-1000.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sobocinski P. Z., Canterbury W. J., Jr, Powanda M. C. Differential effect of parenteral zinc on the course of various bacterial infections. Proc Soc Exp Biol Med. 1977 Nov;156(2):334–339. doi: 10.3181/00379727-156-39931. [DOI] [PubMed] [Google Scholar]
  24. Sobocinski P. Z., Powanda M. C., Canterbury W. J., Machotka S. V., Walker R. I., Snyder S. L. Role of zinc in the abatement of hepatocellular damage and mortality incidence in endotoxemic rats. Infect Immun. 1977 Mar;15(3):950–957. doi: 10.1128/iai.15.3.950-957.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. THAL A. P., SARDESAI V. M. SHOCK AND THE CIRCULATING POLYPEPTIDES. Am J Surg. 1965 Sep;110:308–312. doi: 10.1016/0002-9610(65)90062-0. [DOI] [PubMed] [Google Scholar]
  26. Ucar D. A., Tocco R. J., Kluger M. J. Circadian variation in circulating pyrogen: possible role in resistance to infection. Proc Soc Exp Biol Med. 1983 Jul;173(3):319–323. doi: 10.3181/00379727-173-41649. [DOI] [PubMed] [Google Scholar]
  27. VAN REEN R. Effects of excessive dietary zinc in the rat and the interrelationship with copper. Arch Biochem Biophys. 1953 Oct;46(2):337–344. doi: 10.1016/0003-9861(53)90206-9. [DOI] [PubMed] [Google Scholar]
  28. Van Campen D. R. Effects of zinc, cadmium, silver and mercury on the absorption and distribution of copper-64 in rats. J Nutr. 1966 Jan;88(1):125–130. doi: 10.1093/jn/88.1.125. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES