Abstract
Fungi and the oomycetes include several groups of plant pathogenic microbes. Although these two eukaryotic groups are unrelated they have a number of phenotypic similarities suggested to have evolved convergently. We have recently shown that gene transfer events have occurred from fungi to the oomycetes. These gene transfer events appear to be only one part of a complex and chimeric ancestry for the oomycete genome, which has also received genes from a red algal endosymbiont.
Key Words: horizontal gene transfer, osmotrophy, phototrophy, biotrophy, endosymbiosis, fungi, Magnaporthe grisea
As genomic sampling increases, a persistent pattern of horizontal gene transfer (HGT) between microbial lineages is becoming evident.1,2 So far, patterns of horizontal gene transfer have been identified in four main forms: (A) gene transfer between prokaryote lineages, such that a large proportion of many prokaryote genomes are likely to be chimeric,3,4 (B) gene transfer from the prokaryote progenitors of the mitochondrion and the plastid organelles to a host eukaryote nuclear genome (e.g., refs. 5–7), (C) gene transfer from prokaryote genomes to eukaryote microbes, often involving phagocytic eukaryotes and microbes that share similar habitats8 and (D) gene transfer from a eukaryotic endosymbiont to their host eukaryotic genomes.9,10 This fourth form of gene transfer includes secondary and tertiary endosymbiotic events and has so far provided our best examples of eukaryote-to-eukaryote gene transfer.11,12 Secondary and tertiary endosymbiotic events are typified by the engulfment of a photosynthetic eukaryote by another eukaryote followed by the reduction of the consumed photosynthetic eukaryote and transfer of genes from the endosymbiont to the host nuclei with some retargeting of the transferred gene products back to the remnant organelle.9,10
Gene transfer events can be identified using phylogenetic analysis when an individual gene tree topology contradicts a known species relationship. HGT can only be seriously considered, however, if the gene phylogeny shows that the putative HGT is nested within a donor clade with strong bootstrap support.2 Endosymbiosis typically leads to multiple cases of nuclear-encoded genes demonstrating endosymbiotic ancestry, with the candidate genes grouping within a clade representing the lineage that gave rise to the progenitor of the endosymbiont.5 There have been multiple cases of both secondary and tertiary endosymbiosis within the eukaryotes, making the evolutionary reconstruction of phototrophy in the eukaryotes highly complex.9 Secondary and tertiary endosymbiotic remnant organelles are often identified by the presence of three or more membranes surrounding the organelle body.10 However, secondary endosymbiotic events have led to a range of different combinations of cell apparatus, from the total loss of the endosymbiont-derived organelle13,14 to the maintenance of the organelle compartment10 and the possession of a remnant nucleus as a nucleomorph.15
The oomycetes include the plant pathogenic Phytophthora spp. and are heterokonts (sometimes called Stramenopiles).16 The heterokonts also encompass numerous groups of photosynthetic algae (e.g., Bolidomonas, Diatoms, Xanthophyceae, Phaeophyceae and Chrysophyceae) and are proposed to be derived from an ancestrally photosynthetic cell that obtained its plastid by engulfment of a red alga.16 Cytological studies of the oomycetes have so far failed to identify a relic plastid organelle but the recent publication of the Phytophthora sojae and Phytophthora ramorum genomes identified 855 genes putatively originating from the genome of a photosynthetic microbe consistent with a phototrophic ancestry for the oomycetes.13
Phytophthora plant pathogens include the causal agents of sudden oak death (P. ramorum), potato blight (P. infestans) and, P. sojae which causes serious root and stem rot of soybean plants. Initially, P. infestans was identified as a fungal pathogen and the causal agent of the great 1845 Irish potato famine by Rev. Miles J. Berkeley,17 due to life cycle similarities and an apparently homologous mode of plant infection to ascomycete plant pathogens. It was only with the use of molecular phylogenetic methods starting with small subunit rDNA analysis16 followed by multiple concatenated gene phylogenies18 that the oomycetes were demonstrated to group within the heterokont radiation. With the apparent phylogenetic origins of the oomycetes pinpointed it left the apparent similarities in pathogenic mechanism and infective lifecycle between the filamentous ascomycetes and the oomycetes a mysterious case of convergent evolution.19
During the evolutionary analyses of the predicted proteome of the filamentous plant pathogenic ascomycete Magnaporthe grisea20 we detected a series of unexpected similarities in the genomes of plant pathogenic ascomycetes and the oomycete genomes.13 We followed up this observation by further investigation using phylogenetic methods combined with comparative genomic analysis, which revealed a series of HGT events. We subjected our datasets to a range of tests: (A) to test that the level of support for the tree topology seen was robust given random resampling of the sequence alignments used to reconstruct the gene phylogenies; (B) to ensure that the possibility that similar topologies with the oomycete/filamentous ascomycete relationship removed could be rejected at the 0.05 confidence level and; (C) to test for alternative patterns of gene evolution including hidden paralogy (duplication with differential patterns of gene loss) were unlikely. Four of the datasets tested in this way held up to our scrutiny and were thus proposed as fungi-to-oomycete horizontal gene transfers.21 The predicted function of three of the four genes (CodB, a purine permease, AraJ, a sugar transporter and a PcaH an extracellular dioxygenase) could conceivably be useful for an osmotrophic microbe living in a plant associated habitat (biotrophy), suggesting that these HGT events could in-part explain the convergently evolved similarities in osmotrophy and filamentous growth habit seen in the oomycetes and fungi. Our analyses also suggested that three of these HGTs originated from a genome closely related to the last common ancestor of the Magnaporthe and Aspergillus evolutionary branches. Although the specific branching position of the transferred lineage could not be pinpointed in the fourth analysis, the same point of origin could not however be excluded. This suggests that the four HGTs we identified could be derived from the same source, a phenomenon similar in pattern (if not involving the same lineages) to that seen for phylogenetic tree topologies used to investigate the endosymbiotic events discussed above. Although these analyses do not shed any light on the circumstances in which these transfers occurred, it is possible that an intimate association between a fungus and a heterokont has led to genetic exchange and demonstrates that eukaryote-to-eukaryote gene transfers are not just associated with the acquisition of phototrophy by secondary/tertiary endosymbiosis.
Our published study was conducted using only published genome sequences as a seed for comparative genomic analyses.21 However, with the very recent publication of two Phytophthora genomes13 it is possible that further analyses will identify additional candidate Phytophthora-Fungi HGT events when they are carried out. These tests may determine how pervasive the pattern of HGT is within the oomycetes.
The oomycetes have been classified within the phylum Pseudofungi16 which comprises a number of microbial lineages with phenotypic similarities to true fungi, including hyphae-like structures and osmotrophy. Originally, the term Pseudofungi was used to group together ‘water-moulds’ possessing mastigonemes (tubular tri-partite hairs) on one flagellum. Currently the phylum Pseudofungi comprises the biotrophic oomycetes including parasites of plants and brown algae, the phagotrophic Developayella and the biotrophic hyphochytrids, including the diatom ectoparasite Pirsonia.16 It will be interesting to ascertain at what point within the diversification of the Pseudofungi the HGTs that are identified21 became fixed and how the acquisition of these phenotypes relates to the evolution of Pseudofungi phenotypes within the heterokonts. Independent of the specific ancestry of the gene transfer events within the Pseudofungi it is clear that P. sojae and P. ramorum have chimeric genomes, originating from three separate eukaryotic lineages, the ancestral heterokont nuclear genome, the red algal endosymbiont and at least four genes of fungal ancestry donated to an oomycete nuclear genome.
Footnotes
Previously published online as a Plant Signaling & Behavior E-publication: http://www.landesbioscience.com/journals/psb/abstract.php?id=3640
References
- 1.Andersson JO. Lateral gene transfer in eukaryotes. Cell Mol Life Sci. 2005;62:1182–1197. doi: 10.1007/s00018-005-4539-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Richards TA, Hirt RP, Williams BA, Embley TM. Horizontal gene transfer and the evolution of parasitic protozoa. Protist. 2003;154:17–32. doi: 10.1078/143446103764928468. [DOI] [PubMed] [Google Scholar]
- 3.Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbo CL, Case RJ, Doolittle WF. Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet. 2003;37:283–328. doi: 10.1146/annurev.genet.37.050503.084247. [DOI] [PubMed] [Google Scholar]
- 4.Doolittle WF, Boucher Y, Nesbo CL, Douady CJ, Andersson JO, Roger AJ. How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos Trans R Soc Lond B Biol Sci. 2003;358:39–57. doi: 10.1098/rstb.2002.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Viale AM, Arakaki AK. The chaperone connection to the origins of the eukaryotic organelles. FEBS Lett. 1994;341:146–151. doi: 10.1016/0014-5793(94)80446-x. [DOI] [PubMed] [Google Scholar]
- 6.Gabaldon T, Huynen MA. Reconstruction of the proto-mitochondrial metabolism. Science. 2003;301:609. doi: 10.1126/science.1085463. [DOI] [PubMed] [Google Scholar]
- 7.Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA. 2002;99:12246–12251. doi: 10.1073/pnas.182432999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Loftus B, Anderson I, Davies R, Alsmark UC, Samuelson J, Amedeo P, Roncaglia P, Berriman M, Hirt RP, Mann BJ, Nozaki T, Suh B, Pop M, Duchene M, Ackers J, Tannich E, Leippe M, Hofer M, Bruchhaus I, Willhoeft U, Bhattacharya A, Chillingworth T, Churcher C, Hance Z, Harris B, Harris D, Jagels K, Moule S, Mungall K, Ormond D, Squares R, Whitehead S, Quail MA, Rabbinowitsch E, Norbertczak H, Price C, Wang Z, Guillen N, Gilchrist C, Stroup SE, Bhattacharya S, Lohia A, Foster PG, Sicheritz-Ponten T, Weber C, Singh U, Mukherjee C, El-Sayed NM, Petri WA, Jr, Clark CG, Embley TM, Barrell B, Fraser CM, Hall N. The genome of the protist parasite Entamoeba histolytica. Nature. 2005;433:865–868. doi: 10.1038/nature03291. [DOI] [PubMed] [Google Scholar]
- 9.Archibald JM. Jumping genes and shrinking genomes—Probing the evolution of eukaryotic photosynthesis with genomics. IUBMB Life. 2005;57:539–547. doi: 10.1080/15216540500167732. [DOI] [PubMed] [Google Scholar]
- 10.Cavalier-Smith T. Membrane heredity and early chloroplast evolution. Trends Plant Sci. 2000;5:174–182. doi: 10.1016/s1360-1385(00)01598-3. [DOI] [PubMed] [Google Scholar]
- 11.Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419:498–511. doi: 10.1038/nature01097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA. 2003;100:7678–7683. doi: 10.1073/pnas.1230951100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J, Damasceno CM, Dorrance AE, Dou D, Dickerman AW, Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL, Jones RW, Kamoun S, Krampis K, Lamour KH, Lee MK, McDonald WH, Medina M, Meijer HJ, Nordberg EK, Maclean DJ, Ospina-Giraldo MD, Morris PF, Phuntumart V, Putnam NH, Rash S, Rose JK, Sakihama Y, Salamov AA, Savidor A, Scheuring CF, Smith BM, Sobral BW, Terry A, Torto-Alalibo TA, Win J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS, Boore JL. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science. 2006;313:1261–1266. doi: 10.1126/science.1128796. [DOI] [PubMed] [Google Scholar]
- 14.Zhu G, Marchewka MJ, Keithly JS. Cryptosporidium parvum appears to lack a plastid genome. Microbiology. 2000;146:315–321. doi: 10.1099/00221287-146-2-315. [DOI] [PubMed] [Google Scholar]
- 15.Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI. Complete nucleotide sequence of the chlorarachniophyte nucleomorph: Nature's smallest nucleus. Proc Natl Acad Sci USA. 2006;103:9566–9571. doi: 10.1073/pnas.0600707103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Cavalier-Smith T, Chao EE. Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista) J Mol Evol. 2006;62:388–420. doi: 10.1007/s00239-004-0353-8. [DOI] [PubMed] [Google Scholar]
- 17.Berkeley MJ. Observations, botanical and physiological, on the potato murrain. Horticultural Society Journal. 1846;1 [Google Scholar]
- 18.Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science. 2000;290:972–977. doi: 10.1126/science.290.5493.972. [DOI] [PubMed] [Google Scholar]
- 19.Money NP, Davis CM, Ravishanker JP. Biomechanical evidence for convergent evolution of invasive growth process among fungi and oomycete water molds. Fungal Genetics and Biology. 2004;41:872–876. doi: 10.1016/j.fgb.2004.06.001. [DOI] [PubMed] [Google Scholar]
- 20.Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 2005;434:980–986. doi: 10.1038/nature03449. [DOI] [PubMed] [Google Scholar]
- 21.Richards TA, Dacks JB, Jenkinson JM, Thornton CR, Talbot NJ. Evolution of filamentous plant pathogens: Gene exchange across eukaryotic kingdoms. Curr Biol. 2006;16:1857–1864. doi: 10.1016/j.cub.2006.07.052. [DOI] [PubMed] [Google Scholar]