Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1984 Jan;43(1):202–205. doi: 10.1128/iai.43.1.202-205.1984

Priming of virus-immune memory T cells in newborn mice.

D H Schwartz, J L Hurwitz, N S Greenspan, P C Doherty
PMCID: PMC263410  PMID: 6606624

Abstract

Neonatal BALB/c mice can be primed at birth by intravenous inoculation of a small dose of A/Puerto Rico/8/34 (H1N1) (PR8) influenza virus. UV-inactivated PR8 virus, or PR8 virus complexed with monoclonal antibody to give a secondary cytotoxic T lymphocyte response when restimulated in vitro as adults. The frequency of responding T cells after secondary stimulation in vitro is approximately 40% of that found for adult mice primed intraperitoneally with a large dose of PR8 virus. The majority of the T cells generated from mice primed at birth or as adults are cross-reactive for H-2-compatible targets infected with the PR8 (H1N1) or A/Hong Kong/X31 (H3N2) viruses. Splenocytes from neonates receiving UV-inactivated vaccinia virus at birth give an augmented secondary cytotoxic T lymphocyte response when restimulated 8 days later in adoptive irradiated adult hosts. We found no indications of specific immunological unresponsiveness in mice exposed to either virus.

Full text

PDF
202

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ada G. L., Leung K. N., Ertl H. An analysis of effector T cell generation and function in mice exposed to influenza A or Sendai viruses. Immunol Rev. 1981;58:5–24. doi: 10.1111/j.1600-065x.1981.tb00347.x. [DOI] [PubMed] [Google Scholar]
  2. Allouche M., Owen J. A., Doherty P. C. Limit-dilution analysis of weak influenza-immune T cell responses associated with H-2Kb and H-2Db. J Immunol. 1982 Aug;129(2):689–693. [PubMed] [Google Scholar]
  3. Askonas B. A., Mullbacher A., Ashman R. B. Cytotoxic T-memory cells in virus infection and the specificity of helper T cells. Immunology. 1982 Jan;45(1):79–84. [PMC free article] [PubMed] [Google Scholar]
  4. Bennink J. R., Doherty P. C. Thymocytes can be stimulated to give a strong vaccinia virus-immune cytotoxic T lymphocyte response. J Immunol Methods. 1981;43(1):79–85. doi: 10.1016/0022-1759(81)90038-7. [DOI] [PubMed] [Google Scholar]
  5. Braciale T. J., Andrew M. E., Braciale V. L. Heterogeneity and specificity of cloned lines of influenza-virus specific cytotoxic T lymphocytes. J Exp Med. 1981 Apr 1;153(4):910–923. doi: 10.1084/jem.153.4.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Braciale T. J., Yap K. L. Role of viral infectivity in the induction of influenza virus-specific cytotoxic T cells. J Exp Med. 1978 Apr 1;147(4):1236–1252. doi: 10.1084/jem.147.4.1236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cole G. A., Nathanson N. Lymphocytic choriomeningitis. Pathogenesis. Prog Med Virol. 1974;18(0):94–110. [PubMed] [Google Scholar]
  8. Doherty P. C., Bennink J. R. An examination of MHC restriction in the context of a minimal clonal abortion model for self tolerance. Scand J Immunol. 1980;12(4):271–280. doi: 10.1111/j.1365-3083.1980.tb00067.x. [DOI] [PubMed] [Google Scholar]
  9. Dorsch S., Roser B. Suppressor cells in transplantation tolerance. II. Identification and probable mode of action of chimeric suppressor T cells. Transplantation. 1982 May;33(5):525–529. [PubMed] [Google Scholar]
  10. Francus T., Siskind G. W. Ontogeny of B-lymphocyte function. XII. Evidence that the ability to generate memory cells precedes the ability to produce antibody-secreting cells. Cell Immunol. 1982 Sep 1;72(1):77–87. doi: 10.1016/0008-8749(82)90284-2. [DOI] [PubMed] [Google Scholar]
  11. Greenspan N., Hurwitz J. L., Doherty P. C. Capacity of influenza virus-monoclonal antibody mixtures to stimulate memory and cytotoxic T lymphocyte populations. Infect Immun. 1982 Nov;38(2):645–650. doi: 10.1128/iai.38.2.645-650.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hapel A. J., Bablanian R., Cole G. A. Inductive requirements for the generation of virus-specific T lymphocytes. I. The nature of the host cell-virus interaction that triggers secondary poxvirus-specific cytotoxic T lymphocyte induction. J Immunol. 1978 Aug;121(2):736–743. [PubMed] [Google Scholar]
  13. Lu C. Y., Calamai E. G., Unanue E. R. A defect in the antigen-presenting function of macrophages from neonatal mice. Nature. 1979 Nov 15;282(5736):327–329. doi: 10.1038/282327a0. [DOI] [PubMed] [Google Scholar]
  14. Lu L. Y., Askonas B. A. Cross-reactivity for different type A influenza viruses of a cloned T-killer cell line. Nature. 1980 Nov 13;288(5787):164–165. doi: 10.1038/288164a0. [DOI] [PubMed] [Google Scholar]
  15. Owen J. A., Allouche M., Doherty P. C. Limiting dilution analysis of the specificity of influenza-immune cytotoxic T cells. Cell Immunol. 1982 Feb;67(1):49–59. doi: 10.1016/0008-8749(82)90198-8. [DOI] [PubMed] [Google Scholar]
  16. Pettersson S., Pobor G., Coutinho A. Ontogenic development of B cell reactivities to cooperative cell signals: dissociation between proliferation and antibody secretion. Eur J Immunol. 1982 Aug;12(8):653–658. doi: 10.1002/eji.1830120806. [DOI] [PubMed] [Google Scholar]
  17. Reiss C. S., Schulman J. L. Cellular immune responses of mice to influenza virus vaccines. J Immunol. 1980 Nov;125(5):2182–2188. [PubMed] [Google Scholar]
  18. Schwartz D. H., Doherty P. C. Virus-immune and alloreactive response characteristics of thymocytes and spleen cells from young mice. J Immunol. 1981 Oct;127(4):1411–1414. [PubMed] [Google Scholar]
  19. Shahin R. D., Cebra J. J. Rise in inulin-sensitive B cells during ontogeny can be prematurely stimulated by thymus-dependent and thymus-independent antigens. Infect Immun. 1981 Apr;32(1):211–215. doi: 10.1128/iai.32.1.211-215.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Townsend A. R., Skehel J. J. Influenza A specific cytotoxic T-cell clones that do not recognize viral glycoproteins. Nature. 1982 Dec 16;300(5893):655–657. doi: 10.1038/300655a0. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES