Abstract
Cell-mediated immunity is clearly the critical host defense mechanism against human Coxiella burnetii infection (Q fever); the role of specific antibody is unclear. By using a mouse macrophage tumor cell line, J774, persistently infected with C. burnetii phase I organisms, in a standard 51Cr-release cytotoxicity assay, we explored the possibility that antibody-dependent cellular cytotoxicity may be immune mechanism in Q fever. After 16 h of incubation in the presence of immune sera from Q fever hepatitis or endocarditis patients, nonimmune human peripheral blood effector cells specifically lysed infected J774 target cells; no 51Cr release was seen in the presence of nonimmune sera or uninfected target cells. An effector/target ratio of at least 5:1 was required, and monocytes were more efficient effector cells than lymphocytes. Cytotoxicity was blocked by preincubation of effector cells with purified aggregated human immunoglobulin G, indicating the role of Fc receptor-bearing effector cells. Two nonphagocytic lymphoid tumor cell targets, passively coated with C. burnetii, did not induce substantial immune-specific cytolysis, suggesting that bystander lysis does not explain the observation of specific lysis. Although antibody-dependent cellular cytotoxicity may participate in primary defense, alternatively, it may facilitate the dissemination of C. burnetii or surreptitiously participate in granuloma formation.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akporiaye E. T., Baca O. G. Superoxide anion production and superoxide dismutase and catalase activities in Coxiella burnetii. J Bacteriol. 1983 Apr;154(1):520–523. doi: 10.1128/jb.154.1.520-523.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ascher M. S., Jahrling P. B., Harrington D. G., Kishimoto R. A., McGann V. G. Mechanisms of protective immunogenicity of microbial vaccines: effects of cyclophosphamide pretreatment in Venezuelan encephalitis, Q fever and tularaemia. Clin Exp Immunol. 1980 Aug;41(2):225–236. [PMC free article] [PubMed] [Google Scholar]
- Baca O. G., Akporiaye E. T., Aragon A. S., Martinez I. L., Robles M. V., Warner N. L. Fate of phase I and phase II Coxiella burnetii in several macrophage-like tumor cell lines. Infect Immun. 1981 Jul;33(1):258–266. doi: 10.1128/iai.33.1.258-266.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradley T. P., Bonavida B. Mechanism of cell-mediated cytotoxicity at the single cell level. IV. Natural killing and antibody-dependent cellular cytotoxicity can be mediated by the same human effector cell as determined by the two-target conjugate assay. J Immunol. 1982 Nov;129(5):2260–2265. [PubMed] [Google Scholar]
- Brown J., Smalley M. E. Specific antibody-dependent cellular cytotoxicity in human malaria. Clin Exp Immunol. 1980 Sep;41(3):423–429. [PMC free article] [PubMed] [Google Scholar]
- Burton P. R., Stueckemann J., Welsh R. M., Paretsky D. Some ultrastructural effects of persistent infections by the rickettsia Coxiella burnetii in mouse L cells and green monkey kidney (Vero) cells. Infect Immun. 1978 Aug;21(2):556–566. doi: 10.1128/iai.21.2.556-566.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doughty B. L., Phillips S. M. Delayed hypersensitivity granuloma formation around Schistosoma mansoni eggs in vitro. I. Definition of the model. J Immunol. 1982 Jan;128(1):30–36. [PubMed] [Google Scholar]
- Hackstadt T., Williams J. C. Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci U S A. 1981 May;78(5):3240–3244. doi: 10.1073/pnas.78.5.3240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinrichs D. J., Jerrells T. R. In vitro evaluation of immunity to Coxiella burnetii. J Immunol. 1976 Sep;117(3):996–1003. [PubMed] [Google Scholar]
- Kishimoto R. A., Rozmiarek H., Larson E. W. Experimental Q fever infection in congenitally athymic nude mice. Infect Immun. 1978 Oct;22(1):69–71. doi: 10.1128/iai.22.1.69-71.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marecki N., Becker F., Baca O. G., Paretsky D. Changes in liver and L-cell plasma membranes during infection with Coxiella burnetii. Infect Immun. 1978 Jan;19(1):272–280. doi: 10.1128/iai.19.1.272-280.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peacock M. G., Philip R. N., Williams J. C., Faulkner R. S. Serological evaluation of O fever in humans: enhanced phase I titers of immunoglobulins G and A are diagnostic for Q fever endocarditis. Infect Immun. 1983 Sep;41(3):1089–1098. doi: 10.1128/iai.41.3.1089-1098.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podleski W. K. Cytodestructive mechanisms provoked by lymphocytes. Am J Med. 1976 Jul;61(1):1–8. doi: 10.1016/0002-9343(76)90023-1. [DOI] [PubMed] [Google Scholar]
- Ralph P., Nakoinz I. Antibody-dependent killing of erythrocyte and tumor targets by macrophage-related cell lines: enhancement by PPD and LPS. J Immunol. 1977 Sep;119(3):950–954. [PubMed] [Google Scholar]
- Ralph P., Nakoinz I. Augmentation of macrophage antibody-dependent killing of tumor targets by microtubule inhibitors. Cell Immunol. 1982 Jul 1;70(2):321–329. doi: 10.1016/0008-8749(82)90333-1. [DOI] [PubMed] [Google Scholar]
- Rothlein R., Kim Y. B. Role of Fc receptor modulation by immobilized immune complexes in generation of nonspecific (bystander) cytotoxicity for autologous and xenogeneic targets by porcine alveolar macrophages. J Immunol. 1982 Nov;129(5):1859–1864. [PubMed] [Google Scholar]
- Shen L., Fanger M. W. Secretory IgA antibodies synergize with IgG in promoting ADCC by human polymorphonuclear cells, monocytes, and lymphocytes. Cell Immunol. 1981 Mar 15;59(1):75–81. doi: 10.1016/0008-8749(81)90435-4. [DOI] [PubMed] [Google Scholar]
- Shore S. L., Nahmias A. J., Starr S. E., Wood P. A., McFarlin D. E. Detection of cell-dependent cytotoxic antibody to cells infected with herpes simplex virus. Nature. 1974 Sep 27;251(5473):350–352. doi: 10.1038/251350a0. [DOI] [PubMed] [Google Scholar]
