Skip to main content
Emerging Infectious Diseases logoLink to Emerging Infectious Diseases
letter
. 2008 Dec;14(12):1951–1953. doi: 10.3201/eid1412.080757

Human Case of Bartonella alsatica Lymphadenitis

Emmanouil Angelakis 1,2, Hubert Lepidi 1,2, Atbir Canel 1,2, Patrick Rispal 1,2, Françoise Perraudeau 1,2, Isabelle Barre 1,2, Jean-Marc Rolain 1,2, Didier Raoult 1,2,
PMCID: PMC2634634  PMID: 19046532

To the Editor: Lymph node enlargement is a common medical problem that is usually caused by bacterial, viral, fungal, or protozoal agents (1). Malignancies or lymphoproliferative diseases are often found, especially in elderly patients (1). Bartonella henselae, the main causative agent of cat-scratch disease (CSD), appears to be the most common organism responsible for lymphadenopathy in adults and children (1). CSD has also been rarely associated with B. quintana (2). Recently, the epidemiology of B. quintana as an emerging source of human infection has changed because it has been isolated from the dental pulp of a domestic cat (3). Feral cats have also been found to be infected by B. quintana (4). We report a human case of B. alsatica lymphadenopathy.

A 79-year-old woman came to a hospital in Agen, France, in February 2008 with a large painless axillary mass that she had noticed 10 days earlier. She reported that ≈1 month earlier she was scratched on her finger while butchering a wild rabbit. On examination, she did not have any other specific findings. Blood cell counts and levels of liver enzymes were normal. A large necrotic lymph node was surgically removed the next day. Her condition was treated with doxycycline (200 mg) for 3 weeks.

Our laboratory received a fragment of the lymph node of the patient and a portion of the rabbit that had been cooked, boiled as a terrine, and stored in a freezer at –20°C in the home of the patient. DNA was extracted from these specimens by using a QIAamp Tissue Kit (QIAGEN, Hilden, Germany). The DNA was used as a template in 3 described PCRs specific for a portion of the B. alsatica 16S–23S intergenic spacer (ITS) region, ftsZ gene, and 16S rDNA (5). All results for the lymph node were positive for B. alsatica, and amplification products of the expected size were obtained from this extract. Sequences obtained shared 100% similarity with the corresponding 16S rDNA, ITS region, and ftsZ gene fragment of B. alsatica. However, the terrine specimen was negative for 16S rDNA, the ITS region, and the ftsZ gene. All negative controls showed typical results. B. alsatica have not been tested or found in our laboratory for several years.

B. quintana subsp. Oklahoma, B. henselae subsp. Houston (ATCC 49882), B. vinsonii subsp. berkhoffi (URBVAIE25), B. vinsonii subsp. arupensis (ATCC 700727), and B. alsatica (CIP 105477 T) strains were used for immunofluorescence and Western blotting assays (5). A serum sample taken at admission was negative for B. alsatica by immunofluorescence assay. This result was accepted because serologic results may be negative during the onset of the disease (6). Western blotting with Bartonella spp. antigens (5) was positive for B. alsatica and after adsorption, only B. alsatica antigens retained all antibodies (Appendix Figure, panel A).

Formalin-fixed, paraffin-embedded tissue specimens (3-μm thick) were stained with hematoxylin and eosin. Microscopic examination showed that the normal architecture of the lymph node was destroyed. Histologic changes were dominated by large irregular stellate or round granulomas with central neutrophil-rich necrosis (Appendix Figure, panel B). Granulomas were composed mainly of macrophages, whereas neutrophils in the necrotic areas were fragmented. These granulomas with abscess formation were similar to those described in CSD. Warthin-Starry staining showed bacteria in the necrotic center of the granulomas (Appendix Figure, panel C).

Immunohistologic staining was used to demonstrate B. alsatica in the lymph node. Immunohistochemical analysis was performed by using a monoclonal antibody against B. alsatica with an immunoperoxidase kit previously described (7). Briefly, after deparaffinization, the tissue section was incubated with polyclonal-specific antibody to B. alsatica (8) diluted 1:1,000 in phosphate-buffered saline. Immunodetection was performed with biotinylated immunoglobulins, peroxidase-labeled streptavidin (HistoStain Plus Kit; Zymed, Montrouge, France), and amino-ethyl-carbazole as substrate. Slides were counterstained with Mayer hematoxylin for 10 min. Location of bacteria was superimposable on that in the Warthin-Starry–stained specimens, and clusters of microorganisms were seen in the inflammatory areas (Appendix Figure, panel D).

We report lymphadenitis caused by B. alsatica. Our finding was confirmed by molecular, serologic, and staining methods. Bartonella spp. are zoonotic agents that infect erythrocytes of mammals in which they cause chronic bacteremia (9). B. alsatica was first identified in 1999 in Alsace, France, as an agent of bacteremia in healthy wild rabbits (10). However, in 2006, interest in B. alsatica increased when it was considered to be a human pathogen because it caused blood-culture–negative endocarditis in a patient who had contacts with rabbits (5). The present case confirms that B. alsatica could be a human pathogen, especially in persons who live in contact with rabbits and should be considered a cause of lymphadenopathy.

Supplementary Material

Appendix Figure

A) Western blotting analysis of lymph node specimen from the patient before 1) and after 2) cross-adsorption with Bartonella alsatica. Lane 1, B. quintana; lane 2, B. henselae; lane 3, B. elizabethae; lane 4, B. vinsonii subsp. berkhoffii; lane 5, B. alsatica. B) Characteristic histologic change in the lymph node with B. alsatica infection. Shown is an inflammatory granulomatous process with central microabscess surrounded by a ring of macrophages and rare giant cells (hematoxylin and eosin stain, original magnification ×100). C) Bacteria (arrow) in an abscess formation mixed with necrotic debris (Warthin-Starry silver stain, original magnification ×1,000). D) Immunohistochemical detection of B. alsatica (arrow) in lymph node pulp with an extracellular distribution (polyclonal antibody and hematoxylin counterstain, original magnification ×400).

08-0757_app-s1.gif (676.4KB, gif)

Footnotes

Suggested citation for this article: Angelakis E, Lepidi H, Canel A, Rispal P, Perraudeau F, Barre I, et al. Human case of Bartonella alsatica lymphadenitis [letter]. Emerg Infect Dis [serial on the Internet]. 2008 Dec [date cited]. Available from http://www.cdc.gov/EID/content/14/12/1951.htm

References

  • 1.Rolain JM, Lepidi H, Zanaret M, Triglia JM, Michel G, Thomas PA, et al. Lymph node biopsy specimens and diagnosis of cat-scratch disease. Emerg Infect Dis. 2006;12:1338–44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Raoult D, Drancourt M, Carta A, Gastaut JA. Bartonella (Rochalimaea) quintana isolation in patient with chronic adenopathy, lymphopenia, and a cat. Lancet. 1994;343:977. 10.1016/S0140-6736(94)90102-3 [DOI] [PubMed] [Google Scholar]
  • 3.La VD, Tran-Hung L, Aboudharam G, Raoult D, Drancourt M. Bartonella quintana in domestic cat. Emerg Infect Dis. 2005;11:1287–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Breitschwerdt EB, Maggi RG, Sigmon B, Nicholson WL. Isolation of Bartonella quintana from a woman and a cat following putative bite transmission. J Clin Microbiol. 2007;45:270–2. 10.1128/JCM.01451-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Raoult D, Roblot F, Rolain JM, Besnier JM, Loulergue J, Bastides F, et al. First isolation of Bartonella alsatica from a valve of a patient with endocarditis. J Clin Microbiol. 2006;44:278–9. 10.1128/JCM.44.1.278-279.2006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Maurin M, Rolain JM, Raoult D. Comparison of in-house and commercial slides for detection of immunoglobulins G and M by immunofluorescence against Bartonella henselae and Bartonella quintana. Clin Diagn Lab Immunol. 2002;9:1004–9. 10.1128/CDLI.9.5.1004-1009.2002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Lepidi H, Fournier PE, Raoult D. Quantitative analysis of valvular lesions during Bartonella endocarditis. Am J Clin Pathol. 2000;114:880–9. 10.1309/R0KQ-823A-BTC7-MUUJ [DOI] [PubMed] [Google Scholar]
  • 8.Bonhomme CJ, Nappez C, Raoult D. Microarray for serotyping of Bartonella species. BMC Microbiol. 2007;7:59. 10.1186/1471-2180-7-59 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Breitschwerdt EB, Kordick D. Bartonella infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin Microbiol Rev. 2000;13:428–38. 10.1128/CMR.13.3.428-438.2000 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Heller R, Kubina M, Mariet P, Riegel P, Delacour G, Dehio C, et al. Bartonella alsatica sp. nov., a new Bartonella species isolated from the blood of wild rabbits. Int J Syst Bacteriol. 1999;49:283–8. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Appendix Figure

A) Western blotting analysis of lymph node specimen from the patient before 1) and after 2) cross-adsorption with Bartonella alsatica. Lane 1, B. quintana; lane 2, B. henselae; lane 3, B. elizabethae; lane 4, B. vinsonii subsp. berkhoffii; lane 5, B. alsatica. B) Characteristic histologic change in the lymph node with B. alsatica infection. Shown is an inflammatory granulomatous process with central microabscess surrounded by a ring of macrophages and rare giant cells (hematoxylin and eosin stain, original magnification ×100). C) Bacteria (arrow) in an abscess formation mixed with necrotic debris (Warthin-Starry silver stain, original magnification ×1,000). D) Immunohistochemical detection of B. alsatica (arrow) in lymph node pulp with an extracellular distribution (polyclonal antibody and hematoxylin counterstain, original magnification ×400).

08-0757_app-s1.gif (676.4KB, gif)

Articles from Emerging Infectious Diseases are provided here courtesy of Centers for Disease Control and Prevention

RESOURCES