Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1984 May;44(2):332–338. doi: 10.1128/iai.44.2.332-338.1984

In vitro sorption of albumin, immunoglobulin G, and lysozyme to enamel and cementum from human teeth.

D H Fine, J M Wilton, C Caravana
PMCID: PMC263522  PMID: 6715037

Abstract

Sorption of three 125I-labeled human proteins (albumin, immunoglobulin G, and lysozyme) to enamel and cementum was investigated. All three proteins sorped most when suspended in 0.0005 M solution of phosphate or calcium chloride where the least competition between solute ions and label occurred. The addition of human serum to labeled proteins caused a decrease in their sorption which could be partially reversed by increasing the concentration of label. Kinetic experiments demonstrated that sorption was dependent on protein concentration and incubation time and that most of the sorption occurred within the first minute of the reaction. In conclusion, the binding of the three labeled proteins was affected by the charge of the solute ions and was dependent on ion concentration and reaction time. Sorption correlated for the most part with the pK values of the proteins and thus lysozyme, the most basic protein, sorped more than immunoglobulin G, which sorped more than albumin. In all cases, cementum bound more basic protein than did enamel. Increased levels of albumin sorption to enamel occurred when the protein was suspended in the CaCl2 solution rather than in phosphate. In addition, based on Scatchard analysis, approximately twice as many potential protein binding sites were found for cementum versus enamel.

Full text

PDF
332

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennick A., Chau G., Goodlin R., Abrams S., Tustian D., Madapallimattam G. The role of human salivary acidic proline-rich proteins in the formation of acquired dental pellicle in vivo and their fate after adsorption to the human enamel surface. Arch Oral Biol. 1983;28(1):19–27. doi: 10.1016/0003-9969(83)90022-5. [DOI] [PubMed] [Google Scholar]
  2. Celesk R. A., London J. Attachment of oral Cytophaga species to hydroxyapatite-containing surfaces. Infect Immun. 1980 Aug;29(2):768–777. doi: 10.1128/iai.29.2.768-777.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Celesk R. A., McCabe R. M., London J. Colonization of the cementum surface of teeth by oral Gram-negative bacteria. Infect Immun. 1979 Oct;26(1):15–18. doi: 10.1128/iai.26.1.15-18.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Friedman S. A., Mandel I. D., Herrera M. S. Lysozyme and lactoferrin quantitation in the crevicular fluid. J Periodontol. 1983 Jun;54(6):347–350. doi: 10.1902/jop.1983.54.6.347. [DOI] [PubMed] [Google Scholar]
  5. Genco R. J., Evans R. T., Ellison S. A. Dental research in microbiology with emphasis on periodontal disease. J Am Dent Assoc. 1969 May;78(5):1016–1036. doi: 10.14219/jada.archive.1969.0162. [DOI] [PubMed] [Google Scholar]
  6. Gibbons R. J., Qureshi J. V. Inhibition of adsorption of Streptococcus mutans strains to saliva-treated hydroxyapatite by galactose and certain amines. Infect Immun. 1979 Dec;26(3):1214–1217. doi: 10.1128/iai.26.3.1214-1217.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibbons R. J., van Houte J. On the formation of dental plaques. J Periodontol. 1973 Jun;44(6):347–360. doi: 10.1902/jop.1973.44.6.347. [DOI] [PubMed] [Google Scholar]
  8. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  9. Köhler B., Krasse B., Carlén A. Adherence and Streptococcus mutans infections: in vitro study with saliva from noninfected and infected preschool children. Infect Immun. 1981 Nov;34(2):633–636. doi: 10.1128/iai.34.2.633-636.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lehner T. Cell-mediated immune responses in oral disease: a review. J Oral Pathol. 1972;1(1):39–58. [PubMed] [Google Scholar]
  11. Levine M. J., Herzberg M. C., Levine M. S., Ellison S. A., Stinson M. W., Li H. C., van Dyke T. Specificity of salivary-bacterial interactions: role of terminal sialic acid residues in the interaction of salivary glycoproteins with Streptococcus sanguis and Streptococcus mutans. Infect Immun. 1978 Jan;19(1):107–115. doi: 10.1128/iai.19.1.107-115.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Listgarten M. A. Structure of the microbial flora associated with periodontal health and disease in man. A light and electron microscopic study. J Periodontol. 1976 Jan;47(1):1–18. doi: 10.1902/jop.1976.47.1.1. [DOI] [PubMed] [Google Scholar]
  13. Myhre E. B., Kronvall G. Demonstration of specific binding sites for human serum albumin in group C and G streptococci. Infect Immun. 1980 Jan;27(1):6–14. doi: 10.1128/iai.27.1.6-14.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Neiders M. E., Eick J. D., Miller W. A., Leitner J. W. Electron probe microanalysis of cementum and underlying dentin in young permanent teeth. J Dent Res. 1972 Jan-Feb;51(1):122–130. doi: 10.1177/00220345720510010501. [DOI] [PubMed] [Google Scholar]
  15. Nisengard R. J. The role of immunology in periodontal disease. J Periodontol. 1977 Sep;48(9):505–516. doi: 10.1902/jop.1977.48.9.505. [DOI] [PubMed] [Google Scholar]
  16. Nisengard R., Jarrett C. Coating of subgingival bacteria with immunoglobulin and complement. J Periodontol. 1976 Sep;47(9):518–521. doi: 10.1902/jop.1976.47.9.518. [DOI] [PubMed] [Google Scholar]
  17. RONNHOLM E. The amelogenesis of human teeth as revealed by electron microscopy. II. The development of the enamel crystallites. J Ultrastruct Res. 1962 May;6:249–303. doi: 10.1016/s0022-5320(62)80036-7. [DOI] [PubMed] [Google Scholar]
  18. Schenkein H. A., Genco R. J. Gingival fluid and serum in periodontal diseases. I. Quantitative study of immunoglobulins, complement components, and other plasma proteins. J Periodontol. 1977 Dec;48(12):772–777. doi: 10.1902/jop.1977.48.12.772. [DOI] [PubMed] [Google Scholar]
  19. Selvig K. A. Biological changes at the tooth-saliva interface in periodontal disease. J Dent Res. 1969 Sep-Oct;48(5):846–855. doi: 10.1177/00220345690480053901. [DOI] [PubMed] [Google Scholar]
  20. Terranova V. P., Martin G. R. Molecular factors determining gingival tissue interaction with tooth structure. J Periodontal Res. 1982 Sep;17(5):530–533. doi: 10.1111/j.1600-0765.1982.tb02048.x. [DOI] [PubMed] [Google Scholar]
  21. Weatherell J. A. Composition of dental enamel. Br Med Bull. 1975 May;31(2):115–119. doi: 10.1093/oxfordjournals.bmb.a071263. [DOI] [PubMed] [Google Scholar]
  22. Wilton J. M. The role of the polymorphonuclear leukocyte in the control of subgingival plaque formation. J Periodontal Res. 1982 Sep;17(5):506–508. doi: 10.1111/j.1600-0765.1982.tb02040.x. [DOI] [PubMed] [Google Scholar]
  23. Wirthlin M. R. The current status of new attachment therapy. J Periodontol. 1981 Sep;52(9):529–544. doi: 10.1902/jop.1981.52.9.529. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES