Abstract
In studies of the resistance of inbred mice to infection with Trypanosoma cruzi Peru, mouse strain B10.S was the only strain which survived the infection resulting from the inoculation of 10(3) trypomastigotes. This is the only inbred mouse strain studied to survive infection. To investigate the effect of the H-2 haplotype on survival, C57BL/10 congenic mouse strains bearing H-2S recombinant haplotypes and mouse strains A.SWSn/J and SJL/J were tested for their ability to overcome the T. cruzi infection. None of the recombinant strains tested, including B10.S(7R), B10.S(8R), B10.S(9R), and B10.HTT, survived the infection, indicating that at least two or more regions of the H-2 locus must be H-2S to ensure survival. Strains A.SWSn/J and SJL/J with the H-2S haplotype did not survive, indicating that the genetic background outside the H-2 complex also influences survival. The congenic F1 hybrid (C57BL/10 X B10.S) F1 exhibited intermediate survival levels when compared with the parental strains, indicating that H-2S survival is affected by gene dosage. The F1 hybrid strain [B10.S(7R) X B10.S(8R)]F1, which possesses the complete H-2S haplotype in the trans configuration, did not survive T. cruzi infection, suggesting that H-2S-mediated survival does not operate by trans complementation.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albright J. W., Albright J. F. Differences in resistance to Trypanosoma musculi infection among strains of inbred mice. Infect Immun. 1981 Aug;33(2):364–371. doi: 10.1128/iai.33.2.364-371.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blackwell J., Freeman J., Bradley D. Influence of H-2 complex on acquired resistance to Leishmania donovani infection in mice. Nature. 1980 Jan 3;283(5742):72–74. doi: 10.1038/283072a0. [DOI] [PubMed] [Google Scholar]
- Bradley D. J. Regulation of Leishmania populations within the host. II. genetic control of acute susceptibility of mice to Leishmania donovani infection. Clin Exp Immunol. 1977 Oct;30(1):130–140. [PMC free article] [PubMed] [Google Scholar]
- Bradley D. J., Taylor B. A., Blackwell J., Evans E. P., Freeman J. Regulation of Leishmania populations within the host. III. Mapping of the locus controlling susceptibility to visceral leishmaniasis in the mouse. Clin Exp Immunol. 1979 Jul;37(1):7–14. [PMC free article] [PubMed] [Google Scholar]
- Chesebro B., Wehrly K. Rfv-1 and Rfv-2, two H-2-associated genes that influence recovery from Friend leukemia virus-induced splenomegaly. J Immunol. 1978 Apr;120(4):1081–1085. [PubMed] [Google Scholar]
- Dorf M. E., Maurer P. H., Merryman F., Benacerraf B. Inclusion group systems and cis-trans effects in responses controlled by the two complementing Ir-GLphi genes. J Exp Med. 1976 Apr 1;143(4):889–896. doi: 10.1084/jem.143.4.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groves M. G., Rosenstreich D. L., Taylor B. A., Osterman J. V. Host defenses in experimental scrub typhus: mapping the gene that controls natural resistance in mice. J Immunol. 1980 Sep;125(3):1395–1399. [PubMed] [Google Scholar]
- Hatcher F. M., Kuhn R. E., Cerrone M. C., Burton R. C. Increased natural killer cell activity in experimental American trypanosomiasis. J Immunol. 1981 Sep;127(3):1126–1130. [PubMed] [Google Scholar]
- Hatcher F. M., Kuhn R. E. Spontaneous lytic activity against allogeneic tumor cells and depression of specific cytotoxic responses in mice infected with Trypanosoma cruzi. J Immunol. 1981 Jun;126(6):2436–2442. [PubMed] [Google Scholar]
- Hedrick S. M., Watson J. D. Genetic control of the immune response to collagen. I. Quantitative determination of response levels by multiple I-region genes. J Immunogenet. 1980 Jun;7(3):271–283. doi: 10.1111/j.1744-313x.1980.tb00936.x. [DOI] [PubMed] [Google Scholar]
- Hormaeche C. E. Genetics of natural resistance to salmonellae in mice. Immunology. 1979 Jun;37(2):319–327. [PMC free article] [PubMed] [Google Scholar]
- Kierszenbaum F., Howard J. G. Mechanisms of resistance against experimental Trypanosoma cruzi infection: the importance of antibodies and antibody-forming capacity in the Biozzi high and low responder mice. J Immunol. 1976 May;116(5):1208–1211. [PubMed] [Google Scholar]
- Marsden P. D. Trypanosoma cruzi infections in CFI mice. I. Mortality with different doses of trypanosomes. Ann Trop Med Parasitol. 1967 Mar;61(1):57–61. [PubMed] [Google Scholar]
- Meruelo D. A role for elevated H-2 antigen expression in resistance to neoplasia caused by radiation-induced leukemia virus. Enhancement of effective tumor surveillance by killer lymphocytes. J Exp Med. 1979 Apr 1;149(4):898–909. doi: 10.1084/jem.149.4.898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meruelo D., Edidin M. The biological function of the major histocompatibility complex: hypotheses. Contemp Top Immunobiol. 1980;9:231–253. doi: 10.1007/978-1-4615-9131-3_9. [DOI] [PubMed] [Google Scholar]
- Morrison W. I., Murray M. Trypanosoma congolense: inheritance of susceptibility to infection in inbred strains of mice. Exp Parasitol. 1979 Dec;48(3):364–374. doi: 10.1016/0014-4894(79)90121-8. [DOI] [PubMed] [Google Scholar]
- Nogueira N., Ellis J., Chaplan S., Cohn Z. Trypanosoma cruzi: in vivo and in vitro correlation between T-cell activation and susceptibility in inbred strains of mice. Exp Parasitol. 1981 Jun;51(3):325–334. doi: 10.1016/0014-4894(81)90120-x. [DOI] [PubMed] [Google Scholar]
- Plant J., Glynn A. A. Locating salmonella resistance gene on mouse chromosome 1. Clin Exp Immunol. 1979 Jul;37(1):1–6. [PMC free article] [PubMed] [Google Scholar]
- Rowland E. C., Kuhn R. E. Suppression of cellular responses in mice during Trypanosoma cruzi infections. Infect Immun. 1978 May;20(2):393–397. doi: 10.1128/iai.20.2.393-397.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmitt-Verhulst A. M., Shearer G. M. Bifunctional major histocompatibility-linked genetic regulation of cell-mediated lympholysis to trinitrophenyl-modified autologous lymphocytes. J Exp Med. 1975 Oct 1;142(4):914–927. doi: 10.1084/jem.142.4.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takehara H. A., Perini A., da Silva M. H., Mota I. Trypanosoma cruzi: role of different antibody classes in protection against infection in the mouse. Exp Parasitol. 1981 Aug;52(1):137–146. doi: 10.1016/0014-4894(81)90069-2. [DOI] [PubMed] [Google Scholar]
- Tanowitz H. B., Minato N., Lalonde R., Wittner M. Trypanosoma cruzi: correlation of resistance and susceptibility in infected bred mice with the in vivo primary antibody response to sheep red blood cells. Exp Parasitol. 1981 Oct;52(2):233–242. doi: 10.1016/0014-4894(81)90078-3. [DOI] [PubMed] [Google Scholar]
- Tomazic V., Rose N. R., Shreffler D. C. Autoimmune murine thyroiditis. IV. Localization of genetic control of the immune response. J Immunol. 1974 Mar;112(3):965–969. [PubMed] [Google Scholar]
- Trischmann T. M., Bloom B. R. Genetics of murine resistance to Trypanosoma cruzi. Infect Immun. 1982 Feb;35(2):546–551. doi: 10.1128/iai.35.2.546-551.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trischmann T., Tanowitz H., Wittner M., Bloom B. Trypanosoma cruzi: role of the immune response in the natural resistance of inbred strains of mice. Exp Parasitol. 1978 Aug;45(2):160–168. doi: 10.1016/0014-4894(78)90055-3. [DOI] [PubMed] [Google Scholar]
- Williams D. M., Grumet F. C., Remington J. S. Genetic control of murine resistance to Toxoplasma gondii. Infect Immun. 1978 Feb;19(2):416–420. doi: 10.1128/iai.19.2.416-420.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wrightsman R., Krassner S., Watson J. Genetic control of responses to Trypanosoma cruzi in mice: multiple genes influencing parasitemia and survival. Infect Immun. 1982 May;36(2):637–644. doi: 10.1128/iai.36.2.637-644.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
