Abstract
Biochemical and functional measurements of rat pulmonary alveolar macrophages were measured 4 h after 1 10-s, 26 to 28% total body surface area, full-thickness scald burn induced under ether anesthesia. Both phagocytic activity and capacity were significantly decreased to a comparable extent, whereas microbicidal activity was increased almost twofold in macrophages from the burned animals. Concurrent with the decreased phagocytic function was a marked impairment in chemotaxis and random migration of these cells when zymosan-activated serum was used as the chemoattractant. When biochemical parameters were examined, it was demonstrated that, on a per-cell but not total-protein basis, alveolar macrophages from burned animals had elevated levels of RNA, total protein beta-glucuronidase, acid phosphatase, and 5'-nucleotidase. These results raise the possibility that the increased pneumonitis in burned individuals may be due to more complex macrophage dysfunctions than impaired microbicidal activity, as was once thought. Alternatively, the biochemical and functional changes observed may be a reflection of a new population of macrophages appearing in the lungs after thermal injury.
Full text
PDF![554](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a5c/263622/97e2f900f90a/iai00129-0018.png)
![555](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a5c/263622/027cfaae0336/iai00129-0019.png)
![556](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a5c/263622/a6733c019ca3/iai00129-0020.png)
![557](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a5c/263622/a6e8eb40b493/iai00129-0021.png)
![558](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a5c/263622/d76d1a496f3c/iai00129-0022.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander J. W. Effect of thermal injury upon the early resistance to infection. J Surg Res. 1968 Mar;8(3):128–137. doi: 10.1016/0022-4804(68)90074-7. [DOI] [PubMed] [Google Scholar]
- Alexander J. W., Meakins J. L. A physiological basis for the development of opportunistic infections in man. Ann Surg. 1972 Sep;176(3):273–287. doi: 10.1097/00000658-197209000-00003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alexander J. W., Stinnett J. D., Ogle C. K., Ogle J. D., Morris M. J. A comparison of immunologic profiles and their influence on bacteremia in surgical patients with a high risk of infection. Surgery. 1979 Jul;86(1):94–104. [PubMed] [Google Scholar]
- Altman L. C., Furukawa C. T., Klebanoff S. J. Depressed mononuclear leukocyte chemotaxis in thermally injured patients. J Immunol. 1977 Jul;119(1):199–205. [PubMed] [Google Scholar]
- BOYDEN S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962 Mar 1;115:453–466. doi: 10.1084/jem.115.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis J. M., Dineen P., Gallin J. I. Neutrophil degranulation and abnormal chemotaxis after thermal injury. J Immunol. 1980 Mar;124(3):1467–1471. [PubMed] [Google Scholar]
- Dominioni L., Alexander J. W., Ogle C. K., Mayfield G., Silberstein E. B. In vivo chemotaxis and body compartment distribution of indium-111 labelled polymorphonuclear leukocytes in burned guinea pigs. J Trauma. 1983 Oct;23(10):911–915. doi: 10.1097/00005373-198310000-00012. [DOI] [PubMed] [Google Scholar]
- Edelson P. J., Cohn Z. A. 5'-Nucleotidase activity of mouse peritoneal macrophages. I. Synthesis and degradation in resident and inflammatory populations. J Exp Med. 1976 Dec 1;144(6):1581–1595. doi: 10.1084/jem.144.6.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelson P. J., Cohn Z. A. 5'-Nucleotidase activity of mouse peritoneal macrophages. II. Cellular distribution and effects of endocytosis. J Exp Med. 1976 Dec 1;144(6):1596–1608. doi: 10.1084/jem.144.6.1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fikrig S. M., Karl S. C., Suntharalingam K. Neutrophil chemotaxis in patients with burns. Ann Surg. 1977 Dec;186(6):746–748. doi: 10.1097/00000658-197712000-00015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fishman W. H., Kato K., Anstiss C. L., Green S. Human serum beta-glucuronidase; its measurement and some of its properties. Clin Chim Acta. 1967 Mar;15(3):435–447. doi: 10.1016/0009-8981(67)90008-3. [DOI] [PubMed] [Google Scholar]
- Goldman A. S., Rudloff H. B., McNamee R., Loose L. D., DiLuzio N. R. Deficiency of plasma humoral recognition factor activity following burn injury. J Reticuloendothel Soc. 1974 Mar;15(3):193–198. [PubMed] [Google Scholar]
- Grogan J. B. Suppressed in vitro chemotaxis of burn neutrophils. J Trauma. 1976 Dec;16(12):985–988. doi: 10.1097/00005373-197612000-00008. [DOI] [PubMed] [Google Scholar]
- Hakim A. A. An immunosuppressive factor from serum of thermally traumatized patients. J Trauma. 1977 Dec;17(12):908–919. doi: 10.1097/00005373-197712000-00004. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lentz P. E., Di Luzio N. R. Biochemical characterization of Kupffer and parenchymal cells isolated from rat liver. Exp Cell Res. 1971 Jul;67(1):17–26. doi: 10.1016/0014-4827(71)90616-1. [DOI] [PubMed] [Google Scholar]
- Leonard E. J., Skeel A. Effects of cell concentration on chemotactic responsiveness of mouse resident peritoneal macrophages. J Reticuloendothel Soc. 1981 Oct;30(4):271–282. [PubMed] [Google Scholar]
- Loose L. D., Turinsky J. Depression of the respiratory burst in alveolar and peritoneal macrophages after thermal injury. Infect Immun. 1980 Dec;30(3):718–722. doi: 10.1128/iai.30.3.718-722.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loose L. D., Turinsky J. Macrophage dysfunction after burn injury. Infect Immun. 1979 Oct;26(1):157–162. doi: 10.1128/iai.26.1.157-162.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markley K., Smallman E., Evans G. Effect of E. coli and other bacteria on mortality of burned mice. J Trauma. 1968 Nov;8(6):1052–1064. doi: 10.1097/00005373-196811000-00007. [DOI] [PubMed] [Google Scholar]
- Moncrief J. A. The status of topical antibacterial therapy in the treatment of burns. Surgery. 1968 May;63(5):862–867. [PubMed] [Google Scholar]
- Munster A. M., Eurenius K., Katz R. M., Canales L., Foley F. D., Mortensen R. F. Cell-mediated immunity after thermal injury. Ann Surg. 1973 Feb;177(2):139–143. doi: 10.1097/00000658-197302000-00002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munster A. M., Winchurch R. A., Birmingham W. J., Keeling P. Longitudinal assay of lymphocyte responsiveness in patients with major burns. Ann Surg. 1980 Dec;192(6):772–775. doi: 10.1097/00000658-198012000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nguyen B. Y., Peterson P. K., Verbrugh H. A., Quie P. G., Hoidal J. R. Differences in phagocytosis and killing by alveolar macrophages from humans, rabbits, rats, and hamsters. Infect Immun. 1982 May;36(2):504–509. doi: 10.1128/iai.36.2.504-509.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ninnemann J. L., Fisher J. C., Wachtel T. L. Thermal injury-associated immunosuppression: occurrence and in vitro blocking effect of post recovery serum. J Immunol. 1979 May;122(5):1736–1741. [PubMed] [Google Scholar]
- Norris D. A., Perez R. E., Golitz L. E., Seitz L. E., Weston W. L. Defective monocyte chemotaxis in mycosis fungoides: lack of essential helper lymphocytes. Cancer. 1979 Jul;44(1):124–130. doi: 10.1002/1097-0142(197907)44:1<124::aid-cncr2820440122>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
- Schmid L., Brune K. Assessment of phagocytic and antimicrobial activity of human granulocytes. Infect Immun. 1974 Nov;10(5):1120–1126. doi: 10.1128/iai.10.5.1120-1126.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sevitt S. A review of the complications of burns, their origin and importance for illness and death. J Trauma. 1979 May;19(5):358–369. doi: 10.1097/00005373-197905000-00010. [DOI] [PubMed] [Google Scholar]
- Silverstein P., Dressler D. P. Effect of current therapy on burn mortality. Ann Surg. 1970 Jan;171(1):124–129. doi: 10.1097/00000658-197001000-00018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simpson D. W., Roth R., Loose L. D. A rapid, inexpensive and easily quantified assay for phagocytosis and microbicidal activity of macrophages and neutrophils. J Immunol Methods. 1979;29(3):221–226. doi: 10.1016/0022-1759(79)90309-0. [DOI] [PubMed] [Google Scholar]
- Stinnett J. D., Loose L. D., Miskell P., Tenney C. L., Gonce S. J., Alexander J. W. Synthetic immunomodulators for prevention of fatal infections in a burned guinea pig model. Ann Surg. 1983 Jul;198(1):53–57. doi: 10.1097/00000658-198307000-00010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood G. W., Volenec F. J., Mani M. M., Humphrey L. J. Dynamics of T-lymphocyte subpopulations and T-lymphocyte function following thermal injury. Clin Exp Immunol. 1978 Feb;31(2):291–297. [PMC free article] [PubMed] [Google Scholar]