Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1994 Jul;32(7):1725–1728. doi: 10.1128/jcm.32.7.1725-1728.1994

Ability of PCR assay to identify Mycobacterium tuberculosis in BACTEC 12B vials.

B A Forbes 1, K E Hicks 1
PMCID: PMC263776  PMID: 7929765

Abstract

Introduction of PCR to directly detect Mycobacterium tuberculosis in clinical specimens has shown promise; however, interfering substances in clinical material have contributed to lowered assay sensitivities. We evaluated the ability of a PCR assay to detect M. tuberculosis in BACTEC 12B broth cultures. Clinical specimens were processed and inoculated into BACTEC 12B vials. Evaluation was approached in two phases, starting with an initial evaluation in which an aliquot of 12B broth was removed when the growth index (GI) was > or = 10 and stored at 4 degrees C until assayed by PCR. Of the 290 specimens initially assayed, 129 were culture negative for mycobacteria as well as PCR negative for M. tuberculosis. Except for one, cultures (n = 102) which grew mycobacteria other than M. tuberculosis were all PCR negative. The remaining 59 broths were all culture and PCR positive for M. tuberculosis; 39% (n = 23) of these cultures when assayed by PCR had GIs of < or = 50. Following initial evaluation, 200 12B BACTEC vials with GIs of > or = 10 were assayed in a similar manner except that specimens were amplified twice weekly to determine PCR's impact on the length of time to identification of M. tuberculosis as compared with standard laboratory practices. Utilization of PCR resulted in a mean time to detection of M. tuberculosis of 14 days, compared with 29 days by using commercially available nucleic acid probes to identify M. tuberculosis complex from growth of BACTEC 12B subcultures on solid media. In light of an overall sensitivity and specificity of 100 and 99.7%, respectively, coupled with the ability to identify M. tuberculosis days or weeks before other methods can be applied, we conclude that PCR might prove to be a rapid alternative for identification of M. tuberculosis in culture and allow for earlier setup of susceptibility testing.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brisson-Noël A., Gicquel B., Lecossier D., Lévy-Frébault V., Nassif X., Hance A. J. Rapid diagnosis of tuberculosis by amplification of mycobacterial DNA in clinical samples. Lancet. 1989 Nov 4;2(8671):1069–1071. doi: 10.1016/s0140-6736(89)91082-9. [DOI] [PubMed] [Google Scholar]
  2. Böddinghaus B., Rogall T., Flohr T., Blöcker H., Böttger E. C. Detection and identification of mycobacteria by amplification of rRNA. J Clin Microbiol. 1990 Aug;28(8):1751–1759. doi: 10.1128/jcm.28.8.1751-1759.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clarridge J. E., 3rd, Shawar R. M., Shinnick T. M., Plikaytis B. B. Large-scale use of polymerase chain reaction for detection of Mycobacterium tuberculosis in a routine mycobacteriology laboratory. J Clin Microbiol. 1993 Aug;31(8):2049–2056. doi: 10.1128/jcm.31.8.2049-2056.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cormican M. G., Barry T., Gannon F., Flynn J. Use of polymerase chain reaction for early identification of Mycobacterium tuberculosis in positive cultures. J Clin Pathol. 1992 Jul;45(7):601–604. doi: 10.1136/jcp.45.7.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eisenach K. D., Cave M. D., Bates J. H., Crawford J. T. Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J Infect Dis. 1990 May;161(5):977–981. doi: 10.1093/infdis/161.5.977. [DOI] [PubMed] [Google Scholar]
  6. Evans K. D., Nakasone A. S., Sutherland P. A., de la Maza L. M., Peterson E. M. Identification of Mycobacterium tuberculosis and Mycobacterium avium-M. intracellulare directly from primary BACTEC cultures by using acridinium-ester-labeled DNA probes. J Clin Microbiol. 1992 Sep;30(9):2427–2431. doi: 10.1128/jcm.30.9.2427-2431.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fiss E. H., Chehab F. F., Brooks G. F. DNA amplification and reverse dot blot hybridization for detection and identification of mycobacteria to the species level in the clinical laboratory. J Clin Microbiol. 1992 May;30(5):1220–1224. doi: 10.1128/jcm.30.5.1220-1224.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Forbes B. A., Hicks K. E. Direct detection of Mycobacterium tuberculosis in respiratory specimens in a clinical laboratory by polymerase chain reaction. J Clin Microbiol. 1993 Jul;31(7):1688–1694. doi: 10.1128/jcm.31.7.1688-1694.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Isenberg H. D., D'Amato R. F., Heifets L., Murray P. R., Scardamaglia M., Jacobs M. C., Alperstein P., Niles A. Collaborative feasibility study of a biphasic system (Roche Septi-Chek AFB) for rapid detection and isolation of mycobacteria. J Clin Microbiol. 1991 Aug;29(8):1719–1722. doi: 10.1128/jcm.29.8.1719-1722.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Morgan M. A., Horstmeier C. D., DeYoung D. R., Roberts G. D. Comparison of a radiometric method (BACTEC) and conventional culture media for recovery of mycobacteria from smear-negative specimens. J Clin Microbiol. 1983 Aug;18(2):384–388. doi: 10.1128/jcm.18.2.384-388.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morris A., Reller L., Devlin B. Clinical usefulness of detecting growth of Mycobacterium tuberculosis in positive Bactec phials using PCR. J Clin Pathol. 1994 Feb;47(2):190–191. doi: 10.1136/jcp.47.2.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nolte F. S., Metchock B., McGowan J. E., Jr, Edwards A., Okwumabua O., Thurmond C., Mitchell P. S., Plikaytis B., Shinnick T. Direct detection of Mycobacterium tuberculosis in sputum by polymerase chain reaction and DNA hybridization. J Clin Microbiol. 1993 Jul;31(7):1777–1782. doi: 10.1128/jcm.31.7.1777-1782.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Plikaytis B. B., Plikaytis B. D., Yakrus M. A., Butler W. R., Woodley C. L., Silcox V. A., Shinnick T. M. Differentiation of slowly growing Mycobacterium species, including Mycobacterium tuberculosis, by gene amplification and restriction fragment length polymorphism analysis. J Clin Microbiol. 1992 Jul;30(7):1815–1822. doi: 10.1128/jcm.30.7.1815-1822.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rogall T., Flohr T., Böttger E. C. Differentiation of Mycobacterium species by direct sequencing of amplified DNA. J Gen Microbiol. 1990 Sep;136(9):1915–1920. doi: 10.1099/00221287-136-9-1915. [DOI] [PubMed] [Google Scholar]
  15. Sjöbring U., Mecklenburg M., Andersen A. B., Miörner H. Polymerase chain reaction for detection of Mycobacterium tuberculosis. J Clin Microbiol. 1990 Oct;28(10):2200–2204. doi: 10.1128/jcm.28.10.2200-2204.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Soini H., Skurnik M., Liippo K., Tala E., Viljanen M. K. Detection and identification of mycobacteria by amplification of a segment of the gene coding for the 32-kilodalton protein. J Clin Microbiol. 1992 Aug;30(8):2025–2028. doi: 10.1128/jcm.30.8.2025-2028.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Telenti A., Marchesi F., Balz M., Bally F., Böttger E. C., Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol. 1993 Feb;31(2):175–178. doi: 10.1128/jcm.31.2.175-178.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Victor T., du Toit R., van Helden P. D. Purification of sputum samples through sucrose improves detection of Mycobacterium tuberculosis by polymerase chain reaction. J Clin Microbiol. 1992 Jun;30(6):1514–1517. doi: 10.1128/jcm.30.6.1514-1517.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wilson S. M., McNerney R., Nye P. M., Godfrey-Faussett P. D., Stoker N. G., Voller A. Progress toward a simplified polymerase chain reaction and its application to diagnosis of tuberculosis. J Clin Microbiol. 1993 Apr;31(4):776–782. doi: 10.1128/jcm.31.4.776-782.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES