Skip to main content
. 2008 Nov 17;25(2):243–250. doi: 10.1093/bioinformatics/btn602

Table 2.

Prediction accuracy (percentage of AUC) of the different approaches on the BioGRID-10 dataset

phy loc exp-gasch exp-spellman y2h-ito y2h-uetz tap-gavin tap-krogan int
Mode 1
Direct 58.04 66.55 64.61 57.41 51.52 52.13 59.37 61.62 70.91
kCCA 65.80 63.86 68.98 65.10 50.89 50.48 57.56 51.85 80.98
kML 63.87 68.10 69.67 68.99 52.76 53.85 60.86 57.69 73.47
em 71.22 75.14 67.53 64.96 55.90 53.13 63.74 68.20 81.65
Local 71.67 71.41 72.66 70.63 67.27 67.27 64.60 67.48 75.65
Local+PP 73.89 75.25 77.43 75.35 71.60 71.51 74.62 71.39 83.63
Local+KI 71.68 71.42 75.89 70.96 69.40 69.05 70.53 72.03 81.74
Local+PP+KI 72.40 75.19 77.41 73.81 70.44 70.57 73.59 72.64 83.59
Mode 2
Direct 59.99 67.81 66.18 59.22 54.02 54.64 62.28 63.69 72.34
Pkernel 72.98 69.84 78.61 77.30 57.01 54.65 71.16 70.36 87.34
Local 76.89 78.73 79.72 77.32 72.93 72.89 68.81 73.15 82.82
Local+PP 77.71 80.71 82.56 80.62 74.74 74.41 76.36 75.12 88.78
Local+KI 76.76 78.73 80.62 76.44 73.39 72.76 72.42 76.22 86.12
Local+PP+KI 77.45 80.57 81.93 78.92 74.14 74.01 75.59 76.59 88.56

The best approach for each kernel and each mode of cross-validation is in bold face.