Abstract
In recent years, population and evolutionary biologists have questioned the traditional view that parasite-mediated morbidity and mortality¿virulence¿is a primitive character and an artifact of recent associations between parasites and their hosts. A number of hypotheses have been proposed that favor virulence and suggest that it will be maintained by natural selection. According to some of these hypotheses, the pathogenicity of HIV, Vibrio cholerae, Mycobacterium tuberculosis,theShigella,as well as Plasmodium falciparum,and many other microparasites, are not only maintained by natural selection, but their virulence increases or decreases as an evolutionary response to changes in environmental conditions or the density and/or behavior of the human population. Other hypotheses propose that the virulence of microparasites is not directly favored by natural selection; rather, microparasite-mediated morbidity and mortality are either coincidental to parasite-expressed characters (virulence determinants that evolved for other functions) or the product of short-sighted evolution in infected hosts. These hypotheses for the evolution and maintenance of microparasite virulence are critically reviewed, and suggestions are made for testing them experimentally.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLISON A. C. Protection afforded by sickle-cell trait against subtertian malareal infection. Br Med J. 1954 Feb 6;1(4857):290–294. doi: 10.1136/bmj.1.4857.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allison M. J., Mendoza D., Pezzia A. Documentation of a case of tuberculosis in Pre-Columbian America. Am Rev Respir Dis. 1973 Jun;107(6):985–991. doi: 10.1164/arrd.1973.107.6.985. [DOI] [PubMed] [Google Scholar]
- Anderson R. M., May R. M. Coevolution of hosts and parasites. Parasitology. 1982 Oct;85(Pt 2):411–426. doi: 10.1017/s0031182000055360. [DOI] [PubMed] [Google Scholar]
- Bates J. H., Stead W. W. The history of tuberculosis as a global epidemic. Med Clin North Am. 1993 Nov;77(6):1205–1217. doi: 10.1016/s0025-7125(16)30188-2. [DOI] [PubMed] [Google Scholar]
- Bonhoeffer S., Nowak M. A. Intra-host versus inter-host selection: viral strategies of immune function impairment. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8062–8066. doi: 10.1073/pnas.91.17.8062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebert D. Virulence and local adaptation of a horizontally transmitted parasite. Science. 1994 Aug 19;265(5175):1084–1086. doi: 10.1126/science.265.5175.1084. [DOI] [PubMed] [Google Scholar]
- Essex M., Kanki P. J. The origins of the AIDS virus. Sci Am. 1988 Oct;259(4):64–71. doi: 10.1038/scientificamerican1088-64. [DOI] [PubMed] [Google Scholar]
- FENNER F., DAY M. F., WOODROOFE G. M. Epidemiological consequences of the mechanical transmission of myxomatosis by mosquitoes. J Hyg (Lond) 1956 Jun;54(2):284–303. doi: 10.1017/s0022172400044521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FENNER F. The epizootic behaviour of mouse-pox (infectious ectromelia of mice) the course of events in long-continued epidemics. J Hyg (Lond) 1948 Dec;46(4):383–393. doi: 10.1017/s002217240003655x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finlay B. B., Falkow S. Common themes in microbial pathogenicity. Microbiol Rev. 1989 Jun;53(2):210–230. doi: 10.1128/mr.53.2.210-230.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank S. A. Models of parasite virulence. Q Rev Biol. 1996 Mar;71(1):37–78. doi: 10.1086/419267. [DOI] [PubMed] [Google Scholar]
- Gould S. J., Lewontin R. C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):581–598. doi: 10.1098/rspb.1979.0086. [DOI] [PubMed] [Google Scholar]
- Herre E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science. 1993 Mar 5;259(5100):1442–1445. doi: 10.1126/science.259.5100.1442. [DOI] [PubMed] [Google Scholar]
- Hill A. V., Allsopp C. E., Kwiatkowski D., Anstey N. M., Twumasi P., Rowe P. A., Bennett S., Brewster D., McMichael A. J., Greenwood B. M. Common west African HLA antigens are associated with protection from severe malaria. Nature. 1991 Aug 15;352(6336):595–600. doi: 10.1038/352595a0. [DOI] [PubMed] [Google Scholar]
- Jacquez J. A., Koopman J. S., Simon C. P., Longini I. M., Jr Role of the primary infection in epidemics of HIV infection in gay cohorts. J Acquir Immune Defic Syndr. 1994 Nov;7(11):1169–1184. [PubMed] [Google Scholar]
- Lenski R. E., May R. M. The evolution of virulence in parasites and pathogens: reconciliation between two competing hypotheses. J Theor Biol. 1994 Aug 7;169(3):253–265. doi: 10.1006/jtbi.1994.1146. [DOI] [PubMed] [Google Scholar]
- Levin B. R., Bull J. J. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol. 1994 Mar;2(3):76–81. doi: 10.1016/0966-842x(94)90538-x. [DOI] [PubMed] [Google Scholar]
- Levin B. R., Bull J. J., Stewart F. M. The intrinsic rate of increase of HIV/AIDS: epidemiological and evolutionary implications. Math Biosci. 1996 Feb;132(1):69–96. doi: 10.1016/0025-5564(95)00053-4. [DOI] [PubMed] [Google Scholar]
- Levin B. R., Svanborg Edén C. Selection and evolution of virulence in bacteria: an ecumenical excursion and modest suggestion. Parasitology. 1990;100 (Suppl):S103–S115. doi: 10.1017/s0031182000073054. [DOI] [PubMed] [Google Scholar]
- Lipsitch M., Nowak M. A., Ebert D., May R. M. The population dynamics of vertically and horizontally transmitted parasites. Proc Biol Sci. 1995 Jun 22;260(1359):321–327. doi: 10.1098/rspb.1995.0099. [DOI] [PubMed] [Google Scholar]
- Lipsitch M., Nowak M. A. The evolution of virulence in sexually transmitted HIV/AIDS. J Theor Biol. 1995 Jun 21;174(4):427–440. doi: 10.1006/jtbi.1995.0109. [DOI] [PubMed] [Google Scholar]
- Luzzatto L., Usanga F. A., Reddy S. Glucose-6-phosphate dehydrogenase deficient red cells: resistance to infection by malarial parasites. Science. 1969 May 16;164(3881):839–842. doi: 10.1126/science.164.3881.839. [DOI] [PubMed] [Google Scholar]
- McLean A. R. The balance of power between HIV and the immune system. Trends Microbiol. 1993 Apr;1(1):9–13. doi: 10.1016/0966-842x(93)90018-m. [DOI] [PubMed] [Google Scholar]
- Mead-Briggs A. R., Vaughan J. A. The differential transmissibility of Myxoma virus strains of differing virulence grades by the rabbit flea Spilopsyllus cuniculi (Dale). J Hyg (Lond) 1975 Oct;75(2):237–247. doi: 10.1017/s0022172400047276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller L. H., Mason S. J., Clyde D. F., McGinniss M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med. 1976 Aug 5;295(6):302–304. doi: 10.1056/NEJM197608052950602. [DOI] [PubMed] [Google Scholar]
- Nowak M. A., Anderson R. M., McLean A. R., Wolfs T. F., Goudsmit J., May R. M. Antigenic diversity thresholds and the development of AIDS. Science. 1991 Nov 15;254(5034):963–969. doi: 10.1126/science.1683006. [DOI] [PubMed] [Google Scholar]
- Nowak M. A., May R. M. Superinfection and the evolution of parasite virulence. Proc Biol Sci. 1994 Jan 22;255(1342):81–89. doi: 10.1098/rspb.1994.0012. [DOI] [PubMed] [Google Scholar]
- Sasaki A., Iwasa Y. Optimal growth schedule of pathogens within a host: switching between lytic and latent cycles. Theor Popul Biol. 1991 Apr;39(2):201–239. doi: 10.1016/0040-5809(91)90036-f. [DOI] [PubMed] [Google Scholar]
- Stewart F. M., Levin B. R. The population biology of bacterial viruses: why be temperate. Theor Popul Biol. 1984 Aug;26(1):93–117. doi: 10.1016/0040-5809(84)90026-1. [DOI] [PubMed] [Google Scholar]
- Waters A. P., Higgins D. G., McCutchan T. F. Plasmodium falciparum appears to have arisen as a result of lateral transfer between avian and human hosts. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3140–3144. doi: 10.1073/pnas.88.8.3140. [DOI] [PMC free article] [PubMed] [Google Scholar]