Skip to main content
Emerging Infectious Diseases logoLink to Emerging Infectious Diseases
. 1997 Oct-Dec;3(4):567–573. doi: 10.3201/eid0304.970423

Genetic polymorphism among Cryptosporidium parvum isolates: evidence of two distinct human transmission cycles.

M M Peng 1, L Xiao 1, A R Freeman 1, M J Arrowood 1, A A Escalante 1, A C Weltman 1, C S Ong 1, W R Mac Kenzie 1, A A Lal 1, C B Beard 1
PMCID: PMC2640093  PMID: 9366611

Abstract

We report the results of molecular analysis of 39 isolates of Cryptosporidium parvum from human and bovine sources in nine human outbreaks and from bovine sources from a wide geographic distribution. All 39 isolates could be divided into either of two genotypes, on the basis of genetic polymorphism observed at the thrombospondin-related adhesion protein (TRAP-C2) locus. Genotype 1 was observed only in isolates from humans. Genotype 2, however, was seen in calf isolates and in isolates from a subset of human patients who reported direct exposure to infected cattle or consumed items thought to be contaminated with cattle faces. Furthermore, experimental infection studies showed that genotype 2 isolates were infective to mice or calves under routine laboratory conditions, whereas genotype 1 isolates were not. These results support the occurrence of two distinct transmission cycles of C. parvum in humans.

Full Text

The Full Text of this article is available as a PDF (232.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrowood M. J., Hurd M. R., Mead J. R. A new method for evaluating experimental cryptosporidial parasite loads using immunofluorescent flow cytometry. J Parasitol. 1995 Jun;81(3):404–409. [PubMed] [Google Scholar]
  2. Arrowood M. J., Sterling C. R. Isolation of Cryptosporidium oocysts and sporozoites using discontinuous sucrose and isopycnic Percoll gradients. J Parasitol. 1987 Apr;73(2):314–319. [PubMed] [Google Scholar]
  3. Awad-el-Kariem F. M., Robinson H. A., Dyson D. A., Evans D., Wright S., Fox M. T., McDonald V. Differentiation between human and animal strains of Cryptosporidium parvum using isoenzyme typing. Parasitology. 1995 Feb;110(Pt 2):129–132. doi: 10.1017/s0031182000063885. [DOI] [PubMed] [Google Scholar]
  4. Bonnin A., Fourmaux M. N., Dubremetz J. F., Nelson R. G., Gobet P., Harly G., Buisson M., Puygauthier-Toubas D., Gabriel-Pospisil G., Naciri M. Genotyping human and bovine isolates of Cryptosporidium parvum by polymerase chain reaction-restriction fragment length polymorphism analysis of a repetitive DNA sequence. FEMS Microbiol Lett. 1996 Apr 1;137(2-3):207–211. doi: 10.1111/j.1574-6968.1996.tb08107.x. [DOI] [PubMed] [Google Scholar]
  5. Centers for Disease Control and Prevention (CDC) Outbreak of cryptosporidiosis at a day camp--Florida, July-August 1995. MMWR Morb Mortal Wkly Rep. 1996 May 31;45(21):442–444. [PubMed] [Google Scholar]
  6. Colford J. M., Jr, Tager I. B., Hirozawa A. M., Lemp G. F., Aragon T., Petersen C. Cryptosporidiosis among patients infected with human immunodeficiency virus. Factors related to symptomatic infection and survival. Am J Epidemiol. 1996 Nov 1;144(9):807–816. doi: 10.1093/oxfordjournals.aje.a009015. [DOI] [PubMed] [Google Scholar]
  7. Guerrant R. L. Cryptosporidiosis: an emerging, highly infectious threat. Emerg Infect Dis. 1997 Jan-Mar;3(1):51–57. doi: 10.3201/eid0301.970106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Højlyng N., Mølbak K., Jepsen S. Cryptosporidiosis in human beings is not primarily a zoonosis. J Infect. 1985 Nov;11(3):270–272. doi: 10.1016/s0163-4453(85)93393-6. [DOI] [PubMed] [Google Scholar]
  9. Kim K., Goozé L., Petersen C., Gut J., Nelson R. G. Isolation, sequence and molecular karyotype analysis of the actin gene of Cryptosporidium parvum. Mol Biochem Parasitol. 1992 Jan;50(1):105–113. doi: 10.1016/0166-6851(92)90248-i. [DOI] [PubMed] [Google Scholar]
  10. Mac Kenzie W. R., Hoxie N. J., Proctor M. E., Gradus M. S., Blair K. A., Peterson D. E., Kazmierczak J. J., Addiss D. G., Fox K. R., Rose J. B. A massive outbreak in Milwaukee of cryptosporidium infection transmitted through the public water supply. N Engl J Med. 1994 Jul 21;331(3):161–167. doi: 10.1056/NEJM199407213310304. [DOI] [PubMed] [Google Scholar]
  11. Mead J. R., Arrowood M. J., Sidwell R. W., Healey M. C. Chronic Cryptosporidium parvum infections in congenitally immunodeficient SCID and nude mice. J Infect Dis. 1991 Jun;163(6):1297–1304. doi: 10.1093/infdis/163.6.1297. [DOI] [PubMed] [Google Scholar]
  12. Millard P. S., Gensheimer K. F., Addiss D. G., Sosin D. M., Beckett G. A., Houck-Jankoski A., Hudson A. An outbreak of cryptosporidiosis from fresh-pressed apple cider. JAMA. 1994 Nov 23;272(20):1592–1596. [PubMed] [Google Scholar]
  13. Morgan U. M., Constantine C. C., O'Donoghue P., Meloni B. P., O'Brien P. A., Thompson R. C. Molecular characterization of Cryptosporidium isolates from humans and other animals using random amplified polymorphic DNA analysis. Am J Trop Med Hyg. 1995 Jun;52(6):559–564. doi: 10.4269/ajtmh.1995.52.559. [DOI] [PubMed] [Google Scholar]
  14. Müller H. M., Scarselli E., Crisanti A. Thrombospondin related anonymous protein (TRAP) of Plasmodium falciparum in parasite-host cell interactions. Parassitologia. 1993 Jul;35 (Suppl):69–72. [PubMed] [Google Scholar]
  15. Pozio E., Gomez Morales M. A., Barbieri F. M., La Rosa G. Cryptosporidium: different behaviour in calves of isolates of human origin. Trans R Soc Trop Med Hyg. 1992 Nov-Dec;86(6):636–638. doi: 10.1016/0035-9203(92)90165-9. [DOI] [PubMed] [Google Scholar]
  16. Robson K. J., Hall J. R., Davies L. C., Crisanti A., Hill A. V., Wellems T. E. Polymorphism of the TRAP gene of Plasmodium falciparum. Proc Biol Sci. 1990 Dec 22;242(1305):205–216. doi: 10.1098/rspb.1990.0126. [DOI] [PubMed] [Google Scholar]
  17. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spano F., Putignani L., McLauchlin J., Casemore D. P., Crisanti A. PCR-RFLP analysis of the Cryptosporidium oocyst wall protein (COWP) gene discriminates between C. wrairi and C. parvum, and between C. parvum isolates of human and animal origin. FEMS Microbiol Lett. 1997 May 15;150(2):209–217. doi: 10.1016/s0378-1097(97)00115-8. [DOI] [PubMed] [Google Scholar]
  19. Templeton T. J., Kaslow D. C. Cloning and cross-species comparison of the thrombospondin-related anonymous protein (TRAP) gene from Plasmodium knowlesi, Plasmodium vivax and Plasmodium gallinaceum. Mol Biochem Parasitol. 1997 Jan;84(1):13–24. doi: 10.1016/s0166-6851(96)02775-2. [DOI] [PubMed] [Google Scholar]
  20. Vásquez J. R., Goozé L., Kim K., Gut J., Petersen C., Nelson R. G. Potential antifolate resistance determinants and genotypic variation in the bifunctional dihydrofolate reductase-thymidylate synthase gene from human and bovine isolates of Cryptosporidium parvum. Mol Biochem Parasitol. 1996 Aug;79(2):153–165. doi: 10.1016/0166-6851(96)02647-3. [DOI] [PubMed] [Google Scholar]

Articles from Emerging Infectious Diseases are provided here courtesy of Centers for Disease Control and Prevention

RESOURCES