Abstract
Insecticide resistance has been a problem in all insect groups that serve as vectors of emerging diseases. Although mechanisms by which insecticides become less effective are similar across all vector taxa, each resistance problem is potentially unique and may involve a complex pattern of resistance foci. The main defense against resistance is close surveillance of the susceptibility of vector populations. We describe the mechanisms of insecticide resistance, as well as specific instances of resistance emergence worldwide, and discuss prospects for resistance management and priorities for detection and surveillance.
Full Text
The Full Text of this article is available as a PDF (133.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brogdon W. G., Hobbs J. H., St Jean Y., Jacques J. R., Charles L. B. Microplate assay analysis of reduced fenitrothion susceptibility in Haitian Anopheles albimanus. J Am Mosq Control Assoc. 1988 Jun;4(2):152–158. [PubMed] [Google Scholar]
- Brogdon W. G., McAllister J. C., Vulule J. Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. J Am Mosq Control Assoc. 1997 Sep;13(3):233–237. [PubMed] [Google Scholar]
- Cariño F. A., Koener J. F., Plapp F. W., Jr, Feyereisen R. Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem Mol Biol. 1994 Apr;24(4):411–418. doi: 10.1016/0965-1748(94)90034-5. [DOI] [PubMed] [Google Scholar]
- Cheong H., Dhesi R. K., Gill S. S. Marginal cross-resistance to mosquitocidal Bacillus thuringiensis strains in Cry11A-resistant larvae: presence of Cry11A-like toxins in these strains. FEMS Microbiol Lett. 1997 Aug 15;153(2):419–424. doi: 10.1111/j.1574-6968.1997.tb12605.x. [DOI] [PubMed] [Google Scholar]
- Cohen M. B., Koener J. F., Feyereisen R. Structure and chromosomal localization of CYP6A1, a cytochrome P450-encoding gene from the house fly. Gene. 1994 Sep 2;146(2):267–272. doi: 10.1016/0378-1119(94)90304-2. [DOI] [PubMed] [Google Scholar]
- Daniels T. J., Falco R. C., Schwartz I., Varde S., Robbins R. G. Deer ticks (Ixodes scapularis) and the agents of Lyme disease and human granulocytic ehrlichiosis in a New York City park. Emerg Infect Dis. 1997 Jul-Sep;3(3):353–355. doi: 10.3201/eid0303.970312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Field L. M., Crick S. E., Devonshire A. L. Polymerase chain reaction-based identification of insecticide resistance genes and DNA methylation in the aphid Myzus persicae (Sulzer). Insect Mol Biol. 1996 Aug;5(3):197–202. doi: 10.1111/j.1365-2583.1996.tb00054.x. [DOI] [PubMed] [Google Scholar]
- Gratz N. G., Jany W. C. What role for insecticides in vector control programs? Am J Trop Med Hyg. 1994;50(6 Suppl):11–20. [PubMed] [Google Scholar]
- Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
- Kanda T., Bunnag D., Deesin V., Deesin T., Leemingsawat S., Komalamisra N., Thimasarn K., Sucharit S. Integration of control measures for malaria vectors in endemic areas of Thailand. Southeast Asian J Trop Med Public Health. 1995 Mar;26(1):154–163. [PubMed] [Google Scholar]
- Keller M., Sneh B., Strizhov N., Prudovsky E., Regev A., Koncz C., Schell J., Zilberstein A. Digestion of delta-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to CryIC. Insect Biochem Mol Biol. 1996 Apr;26(4):365–373. doi: 10.1016/0965-1748(95)00102-6. [DOI] [PubMed] [Google Scholar]
- Liu N., Scott J. G. Phenobarbital induction of CYP6D1 is due to a trans acting factor on autosome 2 in house flies, Musca domestica. Insect Mol Biol. 1997 Feb;6(1):77–81. doi: 10.1046/j.1365-2583.1997.00160.x. [DOI] [PubMed] [Google Scholar]
- Maitra S., Dombrowski S. M., Waters L. C., Ganguly R. Three second chromosome-linked clustered Cyp6 genes show differential constitutive and barbital-induced expression in DDT-resistant and susceptible strains of Drosophila melanogaster. Gene. 1996 Nov 21;180(1-2):165–171. doi: 10.1016/s0378-1119(96)00446-5. [DOI] [PubMed] [Google Scholar]
- Meslin F. X. Global aspects of emerging and potential zoonoses: a WHO perspective. Emerg Infect Dis. 1997 Apr-Jun;3(2):223–228. doi: 10.3201/eid0302.970220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyazaki M., Ohyama K., Dunlap D. Y., Matsumura F. Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica). Mol Gen Genet. 1996 Aug 27;252(1-2):61–68. [PubMed] [Google Scholar]
- Mouches C., Pauplin Y., Agarwal M., Lemieux L., Herzog M., Abadon M., Beyssat-Arnaouty V., Hyrien O., de Saint Vincent B. R., Georghiou G. P. Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2574–2578. doi: 10.1073/pnas.87.7.2574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newcomb R. D., Campbell P. M., Ollis D. L., Cheah E., Russell R. J., Oakeshott J. G. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7464–7468. doi: 10.1073/pnas.94.14.7464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patil N. S., Lole K. S., Deobagkar D. N. Adaptive larval thermotolerance and induced cross-tolerance to propoxur insecticide in mosquitoes Anopheles stephensi and Aedes aegypti. Med Vet Entomol. 1996 Jul;10(3):277–282. doi: 10.1111/j.1365-2915.1996.tb00743.x. [DOI] [PubMed] [Google Scholar]
- Prapanthadara L. A., Koottathep S., Promtet N., Hemingway J., Ketterman A. J. Purification and characterization of a major glutathione S-transferase from the mosquito Anopheles dirus (species B). Insect Biochem Mol Biol. 1996 Mar;26(3):277–285. doi: 10.1016/0965-1748(95)00090-9. [DOI] [PubMed] [Google Scholar]
- Rao D. R., Mani T. R., Rajendran R., Joseph A. S., Gajanana A., Reuben R. Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. J Am Mosq Control Assoc. 1995 Mar;11(1):1–5. [PubMed] [Google Scholar]
- Raoult D., Roux V., Ndihokubwayo J. B., Bise G., Baudon D., Marte G., Birtles R. Jail fever (epidemic typhus) outbreak in Burundi. Emerg Infect Dis. 1997 Jul-Sep;3(3):357–360. doi: 10.3201/eid0303.970313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodcharoen J., Mulla M. S. Cross-resistance to Bacillus sphaericus strains in Culex quinquefasciatus. J Am Mosq Control Assoc. 1996 Jun;12(2 Pt 1):247–250. [PubMed] [Google Scholar]
- Rodhain F. Données récentes sur l'épidémiologie de l'encéphalite japonaise. Bull Acad Natl Med. 1996 Jun-Jul;180(6):1325–1340. [PubMed] [Google Scholar]
- Sanders E. J., Borus P., Ademba G., Kuria G., Tukei P. M., LeDuc J. W. Sentinel surveillance for yellow fever in Kenya, 1993 to 1995. Emerg Infect Dis. 1996 Jul-Sep;2(3):236–238. doi: 10.3201/eid0203.960314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smoak B. L., McClain J. B., Brundage J. F., Broadhurst L., Kelly D. J., Dasch G. A., Miller R. N. An outbreak of spotted fever rickettsiosis in U.S. Army troops deployed to Botswana. Emerg Infect Dis. 1996 Jul-Sep;2(3):217–221. doi: 10.3201/eid0203.960309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabashnik B. E., Malvar T., Liu Y. B., Finson N., Borthakur D., Shin B. S., Park S. H., Masson L., de Maagd R. A., Bosch D. Cross-resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins. Appl Environ Microbiol. 1996 Aug;62(8):2839–2844. doi: 10.1128/aem.62.8.2839-2844.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson D. F., Malone J. B., Harb M., Faris R., Huh O. K., Buck A. A., Cline B. L. Bancroftian filariasis distribution and diurnal temperature differences in the southern Nile delta. Emerg Infect Dis. 1996 Jul-Sep;2(3):234–235. doi: 10.3201/eid0203.960313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomita T., Liu N., Smith F. F., Sridhar P., Scott J. G. Molecular mechanisms involved in increased expression of a cytochrome P450 responsible for pyrethroid resistance in the housefly, Musca domestica. Insect Mol Biol. 1995 Aug;4(3):135–140. doi: 10.1111/j.1365-2583.1995.tb00018.x. [DOI] [PubMed] [Google Scholar]
- Tomita T., Scott J. G. cDNA and deduced protein sequence of CYP6D1: the putative gene for a cytochrome P450 responsible for pyrethroid resistance in house fly. Insect Biochem Mol Biol. 1995 Feb;25(2):275–283. doi: 10.1016/0965-1748(94)00066-q. [DOI] [PubMed] [Google Scholar]
- Vais H., Williamson M. S., Hick C. A., Eldursi N., Devonshire A. L., Usherwood P. N. Functional analysis of a rat sodium channel carrying a mutation for insect knock-down resistance (kdr) to pyrethroids. FEBS Lett. 1997 Aug 18;413(2):327–332. doi: 10.1016/s0014-5793(97)00931-9. [DOI] [PubMed] [Google Scholar]
- Vaughan A., Hawkes N., Hemingway J. Co-amplification explains linkage disequilibrium of two mosquito esterase genes in insecticide-resistant Culex quinquefasciatus. Biochem J. 1997 Jul 15;325(Pt 2):359–365. doi: 10.1042/bj3250359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vulule J. M., Beach R. F., Atieli F. K., Roberts J. M., Mount D. L., Mwangi R. W. Reduced susceptibility of Anopheles gambiae to permethrin associated with the use of permethrin-impregnated bednets and curtains in Kenya. Med Vet Entomol. 1994 Jan;8(1):71–75. doi: 10.1111/j.1365-2915.1994.tb00389.x. [DOI] [PubMed] [Google Scholar]
- Williamson M. S., Martinez-Torres D., Hick C. A., Devonshire A. L. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet. 1996 Aug 27;252(1-2):51–60. doi: 10.1007/BF02173204. [DOI] [PubMed] [Google Scholar]
- Zhou Z. H., Syvanen M. A complex glutathione transferase gene family in the housefly Musca domestica. Mol Gen Genet. 1997 Sep;256(2):187–194. doi: 10.1007/s004380050560. [DOI] [PubMed] [Google Scholar]
- ffrench-Constant R. H., Steichen J. C., Rocheleau T. A., Aronstein K., Roush R. T. A single-amino acid substitution in a gamma-aminobutyric acid subtype A receptor locus is associated with cyclodiene insecticide resistance in Drosophila populations. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1957–1961. doi: 10.1073/pnas.90.5.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
