Skip to main content
Emerging Infectious Diseases logoLink to Emerging Infectious Diseases
. 2000 May-Jun;6(3):217–227. doi: 10.3201/eid0603.000301

Remote sensing and human health: new sensors and new opportunities.

L R Beck 1, B M Lobitz 1, B L Wood 1
PMCID: PMC2640871  PMID: 10827111

Abstract

Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Système Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.

Full Text

The Full Text of this article is available as a PDF (810.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck L. R., Rodriguez M. H., Dister S. W., Rodriguez A. D., Rejmankova E., Ulloa A., Meza R. A., Roberts D. R., Paris J. F., Spanner M. A. Remote sensing as a landscape epidemiologic tool to identify villages at high risk for malaria transmission. Am J Trop Med Hyg. 1994 Sep;51(3):271–280. doi: 10.4269/ajtmh.1994.51.271. [DOI] [PubMed] [Google Scholar]
  2. Beck L. R., Rodriguez M. H., Dister S. W., Rodriguez A. D., Washino R. K., Roberts D. R., Spanner M. A. Assessment of a remote sensing-based model for predicting malaria transmission risk in villages of Chiapas, Mexico. Am J Trop Med Hyg. 1997 Jan;56(1):99–106. doi: 10.4269/ajtmh.1997.56.99. [DOI] [PubMed] [Google Scholar]
  3. Cross E. R., Newcomb W. W., Tucker C. J. Use of weather data and remote sensing to predict the geographic and seasonal distribution of Phlebotomus papatasi in southwest Asia. Am J Trop Med Hyg. 1996 May;54(5):530–536. doi: 10.4269/ajtmh.1996.54.530. [DOI] [PubMed] [Google Scholar]
  4. Dister S. W., Fish D., Bros S. M., Frank D. H., Wood B. L. Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. Am J Trop Med Hyg. 1997 Dec;57(6):687–692. doi: 10.4269/ajtmh.1997.57.687. [DOI] [PubMed] [Google Scholar]
  5. Dister S. W., Fish D., Bros S. M., Frank D. H., Wood B. L. Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. Am J Trop Med Hyg. 1997 Dec;57(6):687–692. doi: 10.4269/ajtmh.1997.57.687. [DOI] [PubMed] [Google Scholar]
  6. Freier J. E. Eastern equine encephalomyelitis. Lancet. 1993 Nov 20;342(8882):1281–1282. doi: 10.1016/0140-6736(93)92366-2. [DOI] [PubMed] [Google Scholar]
  7. Hassan A. N., Beck L. R., Dister S. Prediction of villages at risk for filariasis transmission in the Nile Delta using remote sensing and geographic information system technologies. J Egypt Soc Parasitol. 1998 Apr;28(1):75–87. [PubMed] [Google Scholar]
  8. Hassan A. N., Dister S., Beck L. Spatial analysis of lymphatic filariasis distribution in the Nile Delta in relation to some environmental variables using geographic information system technology. J Egypt Soc Parasitol. 1998 Apr;28(1):119–131. [PubMed] [Google Scholar]
  9. Kitron U., Kazmierczak J. J. Spatial analysis of the distribution of Lyme disease in Wisconsin. Am J Epidemiol. 1997 Mar 15;145(6):558–566. doi: 10.1093/oxfordjournals.aje.a009145. [DOI] [PubMed] [Google Scholar]
  10. Linthicum K. J., Bailey C. L., Davies F. G., Tucker C. J. Detection of Rift Valley fever viral activity in Kenya by satellite remote sensing imagery. Science. 1987 Mar 27;235(4796):1656–1659. doi: 10.1126/science.3823909. [DOI] [PubMed] [Google Scholar]
  11. Linthicum K. J., Bailey C. L., Tucker C. J., Mitchell K. D., Logan T. M., Davies F. G., Kamau C. W., Thande P. C., Wagateh J. N. Application of polar-orbiting, meteorological satellite data to detect flooding of Rift Valley Fever virus vector mosquito habitats in Kenya. Med Vet Entomol. 1990 Oct;4(4):433–438. doi: 10.1111/j.1365-2915.1990.tb00462.x. [DOI] [PubMed] [Google Scholar]
  12. Lobitz B., Beck L., Huq A., Wood B., Fuchs G., Faruque A. S., Colwell R. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1438–1443. doi: 10.1073/pnas.97.4.1438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Malone J. B., Huh O. K., Fehler D. P., Wilson P. A., Wilensky D. E., Holmes R. A., Elmagdoub A. I. Temperature data from satellite imagery and the distribution of schistosomiasis in Egypt. Am J Trop Med Hyg. 1994 Jun;50(6):714–722. doi: 10.4269/ajtmh.1994.50.714. [DOI] [PubMed] [Google Scholar]
  14. Pope K. O., Rejmankova E., Savage H. M., Arredondo-Jimenez J. I., Rodriguez M. H., Roberts D. R. Remote sensing of tropical wetlands for malaria control in Chiapas, Mexico. Ecol Appl. 1994 Feb;4(1):81–90. [PubMed] [Google Scholar]
  15. Rejmankova E., Roberts D. R., Pawley A., Manguin S., Polanco J. Predictions of adult Anopheles albimanus densities in villages based on distances to remotely sensed larval habitats. Am J Trop Med Hyg. 1995 Nov;53(5):482–488. doi: 10.4269/ajtmh.1995.53.482. [DOI] [PubMed] [Google Scholar]
  16. Roberts D. R., Paris J. F., Manguin S., Harbach R. E., Woodruff R., Rejmankova E., Polanco J., Wullschleger B., Legters L. J. Predictions of malaria vector distribution in Belize based on multispectral satellite data. Am J Trop Med Hyg. 1996 Mar;54(3):304–308. doi: 10.4269/ajtmh.1996.54.304. [DOI] [PubMed] [Google Scholar]
  17. Robinson T., Rogers D., Williams B. Mapping tsetse habitat suitability in the common fly belt of southern Africa using multivariate analysis of climate and remotely sensed vegetation data. Med Vet Entomol. 1997 Jul;11(3):235–245. doi: 10.1111/j.1365-2915.1997.tb00401.x. [DOI] [PubMed] [Google Scholar]
  18. Rodriguez A. D., Rodriguez M. H., Hernandez J. E., Dister S. W., Beck L. R., Rejmankova E., Roberts D. R. Landscape surrounding human settlements and Anopheles albimanus (Diptera: Culicidae) abundance in Southern Chiapas, Mexico. J Med Entomol. 1996 Jan;33(1):39–48. doi: 10.1093/jmedent/33.1.39. [DOI] [PubMed] [Google Scholar]
  19. Rogers D. J., Randolph S. E. Mortality rates and population density of tsetse flies correlated with satellite imagery. Nature. 1991 Jun 27;351(6329):739–741. doi: 10.1038/351739a0. [DOI] [PubMed] [Google Scholar]
  20. Thompson D. F., Malone J. B., Harb M., Faris R., Huh O. K., Buck A. A., Cline B. L. Bancroftian filariasis distribution and diurnal temperature differences in the southern Nile delta. Emerg Infect Dis. 1996 Jul-Sep;2(3):234–235. doi: 10.3201/eid0203.960313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thomson M. C., Connor S. J., Milligan P. J., Flasse S. P. The ecology of malaria--as seen from Earth-observation satellites. Ann Trop Med Parasitol. 1996 Jun;90(3):243–264. doi: 10.1080/00034983.1996.11813050. [DOI] [PubMed] [Google Scholar]
  22. Thomson M. C., Connor S. J., Milligan P., Flasse S. P. Mapping malaria risk in Africa: What can satellite data contribute? Parasitol Today. 1997 Aug;13(8):313–318. doi: 10.1016/s0169-4758(97)01097-1. [DOI] [PubMed] [Google Scholar]

Articles from Emerging Infectious Diseases are provided here courtesy of Centers for Disease Control and Prevention

RESOURCES