Abstract
Recently, two distinct hepatitis C virus (HCV) serologic types have been identified on the basis of amino acid variations in the core region. The two serologic types can readily discriminate between genotypes I-II-V (serotype 1) and III-IV (serotype 2), according to the Okamoto classification. We compared HCV core serotyping with genotyping with sera from 363 anti-HCV-positive patients (309 HCV RNA positive by PCR) using a synthetic core peptide-based enzyme immunoassay and PCR amplification of core region sequences with type-specific primers, respectively. Serologic responses to HCV serotypes were successfully identified in 164 (45%) patients, of whom 153 were viremic. Eighty-nine patients had evidence of exposure to serotype 1: 8 of these were infected with genotype I, 50 were infected with genotype II, 2 were infected with genotype III, 7 were infected with genotype V, 13 had infections with mixed genotypes, 3 were infected with an indeterminate genotype, and 6 were nonviremic. Seventy-four patients had been exposed to serotype 2: 64 were infected with genotype III, 3 were infected with mixed genotypes, 2 were infected with an indeterminate genotype, and 5 were nonviremic. The serum of one patient, infected with genotype III, showed reactivity to both serotypes. Comparative evaluation of HCV core region serotyping and genotyping with sera from 294 viremic patients infected with a known HCV genotype showed a remarkable concordance between HCV core region genotyping and serotyping, with only 2 apparently discordant serum samples (both from patients with genotype III infection) of 148 (1.4%) successfully serotyped samples. Serotype 1 infection was more frequently observed in patients with overt chronic liver disease and accounted for all successfully serotyped samples from intravenous drug abusers. In contrast, serotype 2 was more prevalent in subjects with biochemically silent HCV infection (alanine aminotransferase, < 45 U/liter), in agreement with previous findings at the molecular level. HCV core serologic typing is a simple, inexpensive, and highly reproducible assay that can be applied to more than 50% of viremic HCV antibody carriers prior to the use of more sophisticated molecular typing techniques. Moreover, it may be helpful in tracking transmissions routes, particularly for incorrectly stored samples in which the RNA has degraded or for subjects who have cleared the virus and therefore have only antibodies remaining to testify to a remote infection. The lack of recognition of the core sequence from residues 67 to 81, which contains a minor B-cell epitope used to detect type-specific immunoreactivity, may explain the negative serologic findings for half of the patients.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alter M. J., Margolis H. S., Krawczynski K., Judson F. N., Mares A., Alexander W. J., Hu P. Y., Miller J. K., Gerber M. A., Sampliner R. E. The natural history of community-acquired hepatitis C in the United States. The Sentinel Counties Chronic non-A, non-B Hepatitis Study Team. N Engl J Med. 1992 Dec 31;327(27):1899–1905. doi: 10.1056/NEJM199212313272702. [DOI] [PubMed] [Google Scholar]
- Cerino A., Boender P., La Monica N., Rosa C., Habets W., Mondelli M. U. A human monoclonal antibody specific for the N terminus of the hepatitis C virus nucleocapsid protein. J Immunol. 1993 Dec 15;151(12):7005–7015. [PubMed] [Google Scholar]
- Chan S. W., McOmish F., Holmes E. C., Dow B., Peutherer J. F., Follett E., Yap P. L., Simmonds P. Analysis of a new hepatitis C virus type and its phylogenetic relationship to existing variants. J Gen Virol. 1992 May;73(Pt 5):1131–1141. doi: 10.1099/0022-1317-73-5-1131. [DOI] [PubMed] [Google Scholar]
- Chemello L., Alberti A., Rose K., Simmonds P. Hepatitis C serotype and response to interferon therapy. N Engl J Med. 1994 Jan 13;330(2):143–143. doi: 10.1056/NEJM199401133300215. [DOI] [PubMed] [Google Scholar]
- Choo Q. L., Kuo G., Weiner A. J., Overby L. R., Bradley D. W., Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989 Apr 21;244(4902):359–362. doi: 10.1126/science.2523562. [DOI] [PubMed] [Google Scholar]
- Choo Q. L., Kuo G., Weiner A. J., Overby L. R., Bradley D. W., Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989 Apr 21;244(4902):359–362. doi: 10.1126/science.2523562. [DOI] [PubMed] [Google Scholar]
- Diodati G., Bonetti P., Noventa F., Casarin C., Rugge M., Scaccabarozzi S., Tagger A., Pollice L., Tremolada F., Davite C. Treatment of chronic hepatitis C with recombinant human interferon-alpha 2a: results of a randomized controlled clinical trial. Hepatology. 1994 Jan;19(1):1–5. [PubMed] [Google Scholar]
- Dusheiko G., Schmilovitz-Weiss H., Brown D., McOmish F., Yap P. L., Sherlock S., McIntyre N., Simmonds P. Hepatitis C virus genotypes: an investigation of type-specific differences in geographic origin and disease. Hepatology. 1994 Jan;19(1):13–18. [PubMed] [Google Scholar]
- Ferroni P., Mascolo G., Zaninetti M., Colzani D., Pregliasco F., Pirisi M., Barbone F., Gasparini V. Identification of four epitopes in hepatitis C virus core protein. J Clin Microbiol. 1993 Jun;31(6):1586–1591. doi: 10.1128/jcm.31.6.1586-1591.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garson J. A., Tuke P. W., Makris M., Briggs M., Machin S. J., Preston F. E., Tedder R. S. Demonstration of viraemia patterns in haemophiliacs treated with hepatitis-C-virus-contaminated factor VIII concentrates. Lancet. 1990 Oct 27;336(8722):1022–1025. doi: 10.1016/0140-6736(90)92487-3. [DOI] [PubMed] [Google Scholar]
- Han J. H., Houghton M. Group specific sequences and conserved secondary structures at the 3' end of HCV genome and its implication for viral replication. Nucleic Acids Res. 1992 Jul 11;20(13):3520–3520. doi: 10.1093/nar/20.13.3520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houghton M., Weiner A., Han J., Kuo G., Choo Q. L. Molecular biology of the hepatitis C viruses: implications for diagnosis, development and control of viral disease. Hepatology. 1991 Aug;14(2):381–388. [PubMed] [Google Scholar]
- Kuo G., Choo Q. L., Alter H. J., Gitnick G. L., Redeker A. G., Purcell R. H., Miyamura T., Dienstag J. L., Alter M. J., Stevens C. E. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science. 1989 Apr 21;244(4902):362–364. doi: 10.1126/science.2496467. [DOI] [PubMed] [Google Scholar]
- Machida A., Ohnuma H., Tsuda F., Munekata E., Tanaka T., Akahane Y., Okamoto H., Mishiro S. Two distinct subtypes of hepatitis C virus defined by antibodies directed to the putative core protein. Hepatology. 1992 Oct;16(4):886–891. doi: 10.1002/hep.1840160406. [DOI] [PubMed] [Google Scholar]
- McOmish F., Chan S. W., Dow B. C., Gillon J., Frame W. D., Crawford R. J., Yap P. L., Follett E. A., Simmonds P. Detection of three types of hepatitis C virus in blood donors: investigation of type-specific differences in serologic reactivity and rate of alanine aminotransferase abnormalities. Transfusion. 1993 Jan;33(1):7–13. doi: 10.1046/j.1537-2995.1993.33193142314.x. [DOI] [PubMed] [Google Scholar]
- Nasoff M. S., Zebedee S. L., Inchauspé G., Prince A. M. Identification of an immunodominant epitope within the capsid protein of hepatitis C virus. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5462–5466. doi: 10.1073/pnas.88.12.5462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamoto H., Sugiyama Y., Okada S., Kurai K., Akahane Y., Sugai Y., Tanaka T., Sato K., Tsuda F., Miyakawa Y. Typing hepatitis C virus by polymerase chain reaction with type-specific primers: application to clinical surveys and tracing infectious sources. J Gen Virol. 1992 Mar;73(Pt 3):673–679. doi: 10.1099/0022-1317-73-3-673. [DOI] [PubMed] [Google Scholar]
- Okamoto H., Tokita H., Sakamoto M., Horikita M., Kojima M., Iizuka H., Mishiro S. Characterization of the genomic sequence of type V (or 3a) hepatitis C virus isolates and PCR primers for specific detection. J Gen Virol. 1993 Nov;74(Pt 11):2385–2390. doi: 10.1099/0022-1317-74-11-2385. [DOI] [PubMed] [Google Scholar]
- Okamoto H., Tsuda F., Machida A., Munekata E., Akahane Y., Sugai Y., Mashiko K., Mitsui T., Tanaka T., Miyakawa Y. Antibodies against synthetic oligopeptides deduced from the putative core gene for the diagnosis of hepatitis virus infection. Hepatology. 1992 Feb;15(2):180–186. doi: 10.1002/hep.1840150203. [DOI] [PubMed] [Google Scholar]
- Silini E., Bono F., Cerino A., Piazza V., Solcia E., Mondelli M. U. Virological features of hepatitis C virus infection in hemodialysis patients. J Clin Microbiol. 1993 Nov;31(11):2913–2917. doi: 10.1128/jcm.31.11.2913-2917.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simmonds P., Holmes E. C., Cha T. A., Chan S. W., McOmish F., Irvine B., Beall E., Yap P. L., Kolberg J., Urdea M. S. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J Gen Virol. 1993 Nov;74(Pt 11):2391–2399. doi: 10.1099/0022-1317-74-11-2391. [DOI] [PubMed] [Google Scholar]
- Simmonds P., McOmish F., Yap P. L., Chan S. W., Lin C. K., Dusheiko G., Saeed A. A., Holmes E. C. Sequence variability in the 5' non-coding region of hepatitis C virus: identification of a new virus type and restrictions on sequence diversity. J Gen Virol. 1993 Apr;74(Pt 4):661–668. doi: 10.1099/0022-1317-74-4-661. [DOI] [PubMed] [Google Scholar]
- Simmonds P., Rose K. A., Graham S., Chan S. W., McOmish F., Dow B. C., Follett E. A., Yap P. L., Marsden H. Mapping of serotype-specific, immunodominant epitopes in the NS-4 region of hepatitis C virus (HCV): use of type-specific peptides to serologically differentiate infections with HCV types 1, 2, and 3. J Clin Microbiol. 1993 Jun;31(6):1493–1503. doi: 10.1128/jcm.31.6.1493-1503.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skinner M. A., Racaniello V. R., Dunn G., Cooper J., Minor P. D., Almond J. W. New model for the secondary structure of the 5' non-coding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. J Mol Biol. 1989 May 20;207(2):379–392. doi: 10.1016/0022-2836(89)90261-1. [DOI] [PubMed] [Google Scholar]
- Takada N., Takase S., Enomoto N., Takada A., Date T. Clinical backgrounds of the patients having different types of hepatitis C virus genomes. J Hepatol. 1992 Jan;14(1):35–40. doi: 10.1016/0168-8278(92)90128-c. [DOI] [PubMed] [Google Scholar]
- Yoshioka K., Kakumu S., Wakita T., Ishikawa T., Itoh Y., Takayanagi M., Higashi Y., Shibata M., Morishima T. Detection of hepatitis C virus by polymerase chain reaction and response to interferon-alpha therapy: relationship to genotypes of hepatitis C virus. Hepatology. 1992 Aug;16(2):293–299. doi: 10.1002/hep.1840160203. [DOI] [PubMed] [Google Scholar]
