Abstract
We have shown that the hydroxyl radical scavengers sodium benzoate, phenol, dimethyl sulfoxide, sodium formate, and mannitol protect chicken erythrocyte (Ec) target cells from lysis by K-cells in plaque assays. The protection afforded by benzoate, phenol, mannitol, and dimethyl sulfoxide was abrogated if the target cells were pretreated with sodium chromate. Neither superoxide dismutase nor catalase protected Ec target cells, indicating that superoxide and H2O2 are not involved in lysis. The lysis obtained on chromium-treated Ec target cells in the presence of benzoate, phenol, and mannitol is likely due to singlet oxygen, because 1,4-diazabicyclo[2.2.2]octane and bilirubin, singlet oxygen scavengers, protected chromium-treated Ec target cells in the presence of phenol. Ec target cells not treated with chromium were not protected by either of the singlet oxygen scavengers.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borregaard N., Kragballe K. Role of oxygen in antibody-dependent cytotoxicity mediated by monocytes and neutrophils. J Clin Invest. 1980 Oct;66(4):676–683. doi: 10.1172/JCI109904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COULSON A. S., CHALMERS D. G. SEPARATION OF VIABLE LYMPHOCYTES FROM HUMAN BLOOD. Lancet. 1964 Feb 29;1(7331):468–469. doi: 10.1016/s0140-6736(64)90799-8. [DOI] [PubMed] [Google Scholar]
- Clark R. A., Klebanoff S. J. Studies on the mechanism of antibody-dependent polymorphonuclear leukocyte-mediated cytotoxicity. J Immunol. 1977 Oct;119(4):1413–1418. [PubMed] [Google Scholar]
- Conkling P., Klassen D. K., Sagone A. L., Jr Comparison of antibody-dependent cytotoxicity mediated by human polymorphonuclear cells, monocytes, and alveolar macrophages. Blood. 1982 Dec;60(6):1290–1297. [PubMed] [Google Scholar]
- Diliberto D. J., Jr, Veiveros O. H., Axelrod J. Subcellualr distribution of protein carboxymethylase and its endogenous substrates in the adrenal medulla: possible role in excitation-secretion coupling. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4050–4054. doi: 10.1073/pnas.73.11.4050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diliberto E. J., Jr, Axelrod J. Regional and subcellular distribution of protein carboxymethylase in brain and other tissues. J Neurochem. 1976 Jun;26(6):1159–1165. doi: 10.1111/j.1471-4159.1976.tb07001.x. [DOI] [PubMed] [Google Scholar]
- Gutteridge J. M. The role of superoxide and hydroxyl radicals in phospholipid peroxidation catalysed by iron salts. FEBS Lett. 1982 Dec 27;150(2):454–458. doi: 10.1016/0014-5793(82)80788-6. [DOI] [PubMed] [Google Scholar]
- Hirata F., Axelrod J. Phospholipid methylation and biological signal transmission. Science. 1980 Sep 5;209(4461):1082–1090. doi: 10.1126/science.6157192. [DOI] [PubMed] [Google Scholar]
- Katz P., Simone C. B., Henkart P. A., Fauci A. S. Mechanisms of antibody-dependent cellular cytotoxicity: the use of effector cells from chronic granulomatous disease patients as investigative probes. J Clin Invest. 1980 Jan;65(1):55–63. doi: 10.1172/JCI109660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kellogg E. W., 3rd, Fridovich I. Liposome oxidation and erythrocyte lysis by enzymically generated superoxide and hydrogen peroxide. J Biol Chem. 1977 Oct 10;252(19):6721–6728. [PubMed] [Google Scholar]
- Klassen D. K., Sagone A. L., Jr Evidence for both oxygen and non-oxygen dependent mechanisms of antibody sensitized target cell lysis by human monocytes. Blood. 1980 Dec;56(6):985–992. [PubMed] [Google Scholar]
- Kong S., Davison A. J. The relative effectiveness of .OH, H2O2, O2-, and reducing free radicals in causing damage to biomembranes. A study of radiation damage to erythrocyte ghosts using selective free radical scavengers. Biochim Biophys Acta. 1981 Jan 8;640(1):313–325. doi: 10.1016/0005-2736(81)90555-1. [DOI] [PubMed] [Google Scholar]
- McDonagh A. F. Evidence for singlet oxygen quenching by biliverdin IX-alpha dimethyl ester and its relevance to bilirubin photo-oxidation. Biochem Biophys Res Commun. 1972 Jul 25;48(2):408–415. doi: 10.1016/s0006-291x(72)80066-4. [DOI] [PubMed] [Google Scholar]
- McDonagh A. F. The role of singlet oxygen in bilirubin photo-oxidation. Biochem Biophys Res Commun. 1971 Sep 17;44(6):1306–1311. doi: 10.1016/s0006-291x(71)80228-0. [DOI] [PubMed] [Google Scholar]
- Nathan C. F., Silverstein S. C., Brukner L. H., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J Exp Med. 1979 Jan 1;149(1):100–113. doi: 10.1084/jem.149.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panganamala R. V., Sharma H. M., Sprecher H., Geer J. C., Cornwell D. G. A suggested role for hydrogen peroxide in the biosynthesis of prostaglandins. Prostaglandins. 1974 Oct 10;8(1):3–11. doi: 10.1016/0090-6980(74)90031-8. [DOI] [PubMed] [Google Scholar]
- Perlmann P., Perlmann H. Contactual lysis of antibody-coated chicken erythrocytes by purified lymphocytes. Cell Immunol. 1970 Sep;1(3):300–315. doi: 10.1016/0008-8749(70)90051-1. [DOI] [PubMed] [Google Scholar]
- Richmond R., Halliwell B., Chauhan J., Darbre A. Superoxide-dependent formation of hydroxyl radicals: detection of hydroxyl radicals by the hydroxylation of aromatic compounds. Anal Biochem. 1981 Dec;118(2):328–335. doi: 10.1016/0003-2697(81)90590-x. [DOI] [PubMed] [Google Scholar]
- Sagone A. L., Jr, Klassen D. K., Decker M. A., Clark L., Metz E. N. Characteristics of the metabolic response of human monocytes to red cells sensitized with anti-D alloantibodies. J Lab Clin Med. 1981 Sep;98(3):382–395. [PubMed] [Google Scholar]
