Skip to main content
The Plant Cell logoLink to The Plant Cell
. 2004 Mar 9;16(Suppl):S170–S180. doi: 10.1105/tpc.019158

Genetic regulation of fruit development and ripening.

James J Giovannoni 1
PMCID: PMC2643394  PMID: 15010516

Full Text

The Full Text of this article is available as a PDF (191.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aharoni Asaph, O'Connell Ann P. Gene expression analysis of strawberry achene and receptacle maturation using DNA microarrays. J Exp Bot. 2002 Oct;53(377):2073–2087. doi: 10.1093/jxb/erf026. [DOI] [PubMed] [Google Scholar]
  2. Alba R., Cordonnier-Pratt M. M., Pratt L. H. Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato. Plant Physiol. 2000 May;123(1):363–370. doi: 10.1104/pp.123.1.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alvarez-Buylla E. R., Liljegren S. J., Pelaz S., Gold S. E., Burgeff C., Ditta G. S., Vergara-Silva F., Yanofsky M. F. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J. 2000 Nov;24(4):457–466. doi: 10.1046/j.1365-313x.2000.00891.x. [DOI] [PubMed] [Google Scholar]
  4. Ampomah-Dwamena Charles, Morris Bret A., Sutherland Paul, Veit Bruce, Yao Jia-Long. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol. 2002 Oct;130(2):605–617. doi: 10.1104/pp.005223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barry C. S., Blume B., Bouzayen M., Cooper W., Hamilton A. J., Grierson D. Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J. 1996 Apr;9(4):525–535. doi: 10.1046/j.1365-313x.1996.09040525.x. [DOI] [PubMed] [Google Scholar]
  6. Barry C. S., Llop-Tous M. I., Grierson D. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 2000 Jul;123(3):979–986. doi: 10.1104/pp.123.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bleecker A. B., Kende H. Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol. 2000;16:1–18. doi: 10.1146/annurev.cellbio.16.1.1. [DOI] [PubMed] [Google Scholar]
  8. Bowman J. L., Smyth D. R., Meyerowitz E. M. Genes directing flower development in Arabidopsis. Plant Cell. 1989 Jan;1(1):37–52. doi: 10.1105/tpc.1.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boylan M. T., Quail P. H. Oat Phytochrome Is Biologically Active in Transgenic Tomatoes. Plant Cell. 1989 Aug;1(8):765–773. doi: 10.1105/tpc.1.8.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bramley Peter M. Regulation of carotenoid formation during tomato fruit ripening and development. J Exp Bot. 2002 Oct;53(377):2107–2113. doi: 10.1093/jxb/erf059. [DOI] [PubMed] [Google Scholar]
  11. Brazma A., Hingamp P., Quackenbush J., Sherlock G., Spellman P., Stoeckert C., Aach J., Ansorge W., Ball C. A., Causton H. C. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001 Dec;29(4):365–371. doi: 10.1038/ng1201-365. [DOI] [PubMed] [Google Scholar]
  12. Brummell D. A., Hall B. D., Bennett A. B. Antisense suppression of tomato endo-1,4-beta-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol Biol. 1999 Jul;40(4):615–622. doi: 10.1023/a:1006269031452. [DOI] [PubMed] [Google Scholar]
  13. Brummell D. A., Harpster M. H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol. 2001 Sep;47(1-2):311–340. [PubMed] [Google Scholar]
  14. Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell. 1999 Nov;11(11):2203–2216. doi: 10.1105/tpc.11.11.2203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chao Q., Rothenberg M., Solano R., Roman G., Terzaghi W., Ecker J. R. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 1997 Jun 27;89(7):1133–1144. doi: 10.1016/s0092-8674(00)80300-1. [DOI] [PubMed] [Google Scholar]
  16. Clark K. L., Larsen P. B., Wang X., Chang C. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5401–5406. doi: 10.1073/pnas.95.9.5401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Deikman J., Kline R., Fischer R. L. Organization of Ripening and Ethylene Regulatory Regions in a Fruit-Specific Promoter from Tomato (Lycopersicon esculentum). Plant Physiol. 1992 Dec;100(4):2013–2017. doi: 10.1104/pp.100.4.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dellapenna D., Lincoln J. E., Fischer R. L., Bennett A. B. Transcriptional Analysis of Polygalacturonase and Other Ripening Associated Genes in Rutgers, rin, nor, and Nr Tomato Fruit. Plant Physiol. 1989 Aug;90(4):1372–1377. doi: 10.1104/pp.90.4.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Drews G. N., Bowman J. L., Meyerowitz E. M. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell. 1991 Jun 14;65(6):991–1002. doi: 10.1016/0092-8674(91)90551-9. [DOI] [PubMed] [Google Scholar]
  20. Ewing R. M., Ben Kahla A., Poirot O., Lopez F., Audic S., Claverie J. M. Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res. 1999 Oct;9(10):950–959. doi: 10.1101/gr.9.10.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Favaro Rebecca, Pinyopich Anusak, Battaglia Raffaella, Kooiker Maarten, Borghi Lorenzo, Ditta Gary, Yanofsky Martin F., Kater Martin M., Colombo Lucia. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell. 2003 Oct 10;15(11):2603–2611. doi: 10.1105/tpc.015123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ferrándiz C., Liljegren S. J., Yanofsky M. F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science. 2000 Jul 21;289(5478):436–438. doi: 10.1126/science.289.5478.436. [DOI] [PubMed] [Google Scholar]
  23. Fray R. G., Grierson D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol. 1993 Jul;22(4):589–602. doi: 10.1007/BF00047400. [DOI] [PubMed] [Google Scholar]
  24. Gao Zhiyong, Chen Yi-Feng, Randlett Melynda D., Zhao Xue-Chu, Findell Jennifer L., Kieber Joseph J., Schaller G. Eric. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem. 2003 Jun 23;278(36):34725–34732. doi: 10.1074/jbc.M305548200. [DOI] [PubMed] [Google Scholar]
  25. Giovannoni J. J., DellaPenna D., Bennett A. B., Fischer R. L. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell. 1989 Jan;1(1):53–63. doi: 10.1105/tpc.1.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Giovannoni J. J., Noensie E. N., Ruezinsky D. M., Lu X., Tracy S. L., Ganal M. W., Martin G. B., Pillen K., Alpert K., Tanksley S. D. Molecular genetic analysis of the ripening-inhibitor and non-ripening loci of tomato: a first step in genetic map-based cloning of fruit ripening genes. Mol Gen Genet. 1995 Jul 28;248(2):195–206. doi: 10.1007/BF02190801. [DOI] [PubMed] [Google Scholar]
  27. Giovannoni Jim. MOLECULAR BIOLOGY OF FRUIT MATURATION AND RIPENING. Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52(NaN):725–749. doi: 10.1146/annurev.arplant.52.1.725. [DOI] [PubMed] [Google Scholar]
  28. Hua J., Chang C., Sun Q., Meyerowitz E. M. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science. 1995 Sep 22;269(5231):1712–1714. doi: 10.1126/science.7569898. [DOI] [PubMed] [Google Scholar]
  29. Hua J., Meyerowitz E. M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell. 1998 Jul 24;94(2):261–271. doi: 10.1016/s0092-8674(00)81425-7. [DOI] [PubMed] [Google Scholar]
  30. Isaacson Tal, Ronen Gil, Zamir Dani, Hirschberg Joseph. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. Plant Cell. 2002 Feb;14(2):333–342. doi: 10.1105/tpc.010303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
  32. Kneissl M. L., Deikman J. The Tomato E8 Gene Influences Ethylene Biosynthesis in Fruit but Not in Flowers. Plant Physiol. 1996 Oct;112(2):537–547. doi: 10.1104/pp.112.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lanahan M. B., Yen H. C., Giovannoni J. J., Klee H. J. The never ripe mutation blocks ethylene perception in tomato. Plant Cell. 1994 Apr;6(4):521–530. doi: 10.1105/tpc.6.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lashbrook C. C., Tieman D. M., Klee H. J. Differential regulation of the tomato ETR gene family throughout plant development. Plant J. 1998 Jul;15(2):243–252. doi: 10.1046/j.1365-313x.1998.00202.x. [DOI] [PubMed] [Google Scholar]
  35. Leclercq Julie, Adams-Phillips Lori C., Zegzouti Hicham, Jones Brian, Latché Alain, Giovannoni James J., Pech Jean-Claude, Bouzayen Mondher. LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. Plant Physiol. 2002 Nov;130(3):1132–1142. doi: 10.1104/pp.009415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Liljegren S. J., Ditta G. S., Eshed Y., Savidge B., Bowman J. L., Yanofsky M. F. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature. 2000 Apr 13;404(6779):766–770. doi: 10.1038/35008089. [DOI] [PubMed] [Google Scholar]
  37. Lincoln J. E., Fischer R. L. Regulation of Gene Expression by Ethylene in Wild-Type and rin Tomato (Lycopersicon esculentum) Fruit. Plant Physiol. 1988 Oct;88(2):370–374. doi: 10.1104/pp.88.2.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Liu Yong-Sheng, Gur Amit, Ronen Gil, Causse Mathilde, Damidaux René, Buret Michel, Hirschberg Joseph, Zamir Dani. There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol J. 2003 May;1(3):195–207. doi: 10.1046/j.1467-7652.2003.00018.x. [DOI] [PubMed] [Google Scholar]
  39. Lohmann Jan U., Weigel Detlef. Building beauty: the genetic control of floral patterning. Dev Cell. 2002 Feb;2(2):135–142. doi: 10.1016/s1534-5807(02)00122-3. [DOI] [PubMed] [Google Scholar]
  40. Lois L. M., Rodríguez-Concepción M., Gallego F., Campos N., Boronat A. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J. 2000 Jun;22(6):503–513. doi: 10.1046/j.1365-313x.2000.00764.x. [DOI] [PubMed] [Google Scholar]
  41. Manning K. Isolation of a set of ripening-related genes from strawberry: their identification and possible relationship to fruit quality traits. Planta. 1998 Aug;205(4):622–631. doi: 10.1007/s004250050365. [DOI] [PubMed] [Google Scholar]
  42. Mao L., Begum D., Chuang H. W., Budiman M. A., Szymkowiak E. J., Irish E. E., Wing R. A. JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature. 2000 Aug 24;406(6798):910–913. doi: 10.1038/35022611. [DOI] [PubMed] [Google Scholar]
  43. Mustilli A. C., Fenzi F., Ciliento R., Alfano F., Bowler C. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell. 1999 Feb;11(2):145–157. doi: 10.1105/tpc.11.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Oeller P. W., Lu M. W., Taylor L. P., Pike D. A., Theologis A. Reversible inhibition of tomato fruit senescence by antisense RNA. Science. 1991 Oct 18;254(5030):437–439. doi: 10.1126/science.1925603. [DOI] [PubMed] [Google Scholar]
  45. Ogihara Yasunari, Mochida Keiichi, Nemoto Yasue, Murai Koji, Yamazaki Yukiko, Shin-I Tadasu, Kohara Yuji. Correlated clustering and virtual display of gene expression patterns in the wheat life cycle by large-scale statistical analyses of expressed sequence tags. Plant J. 2003 Mar;33(6):1001–1011. doi: 10.1046/j.1365-313x.2003.01687.x. [DOI] [PubMed] [Google Scholar]
  46. Orfila C., Seymour G. B., Willats W. G., Huxham I. M., Jarvis M. C., Dover C. J., Thompson A. J., Knox J. P. Altered middle lamella homogalacturonan and disrupted deposition of (1-->5)-alpha-L-arabinan in the pericarp of Cnr, a ripening mutant of tomato. Plant Physiol. 2001 May;126(1):210–221. doi: 10.1104/pp.126.1.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Payton S., Fray R. G., Brown S., Grierson D. Ethylene receptor expression is regulated during fruit ripening, flower senescence and abscission. Plant Mol Biol. 1996 Sep;31(6):1227–1231. doi: 10.1007/BF00040839. [DOI] [PubMed] [Google Scholar]
  48. Pelaz S., Ditta G. S., Baumann E., Wisman E., Yanofsky M. F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature. 2000 May 11;405(6783):200–203. doi: 10.1038/35012103. [DOI] [PubMed] [Google Scholar]
  49. Penarrubia L., Aguilar M., Margossian L., Fischer R. L. An Antisense Gene Stimulates Ethylene Hormone Production during Tomato Fruit Ripening. Plant Cell. 1992 Jun;4(6):681–687. doi: 10.1105/tpc.4.6.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Pinyopich Anusak, Ditta Gary S., Savidge Beth, Liljegren Sarah J., Baumann Elvira, Wisman Ellen, Yanofsky Martin F. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature. 2003 Jul 3;424(6944):85–88. doi: 10.1038/nature01741. [DOI] [PubMed] [Google Scholar]
  51. Pnueli L., Hareven D., Broday L., Hurwitz C., Lifschitz E. The TM5 MADS Box Gene Mediates Organ Differentiation in the Three Inner Whorls of Tomato Flowers. Plant Cell. 1994 Feb;6(2):175–186. doi: 10.1105/tpc.6.2.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Pnueli L., Hareven D., Rounsley S. D., Yanofsky M. F., Lifschitz E. Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell. 1994 Feb;6(2):163–173. doi: 10.1105/tpc.6.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Périn Christophe, Gomez-Jimenez MariCarmen, Hagen Lynda, Dogimont Catherine, Pech Jean-Claude, Latché Alain, Pitrat Michel, Lelièvre Jean-Marc. Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol. 2002 May;129(1):300–309. doi: 10.1104/pp.010613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Rodríguez F. I., Esch J. J., Hall A. E., Binder B. M., Schaller G. E., Bleecker A. B. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science. 1999 Feb 12;283(5404):996–998. doi: 10.1126/science.283.5404.996. [DOI] [PubMed] [Google Scholar]
  55. Roeder Adrienne H. K., Ferrándiz Cristina, Yanofsky Martin F. The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr Biol. 2003 Sep 16;13(18):1630–1635. doi: 10.1016/j.cub.2003.08.027. [DOI] [PubMed] [Google Scholar]
  56. Ronen G., Carmel-Goren L., Zamir D., Hirschberg J. An alternative pathway to beta -carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11102–11107. doi: 10.1073/pnas.190177497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Ronen G., Cohen M., Zamir D., Hirschberg J. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J. 1999 Feb;17(4):341–351. doi: 10.1046/j.1365-313x.1999.00381.x. [DOI] [PubMed] [Google Scholar]
  58. Rose J. K., Lee H. H., Bennett A. B. Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5955–5960. doi: 10.1073/pnas.94.11.5955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Rottmann W. H., Peter G. F., Oeller P. W., Keller J. A., Shen N. F., Nagy B. P., Taylor L. P., Campbell A. D., Theologis A. 1-aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J Mol Biol. 1991 Dec 20;222(4):937–961. doi: 10.1016/0022-2836(91)90587-v. [DOI] [PubMed] [Google Scholar]
  60. Seymour Graham B., Manning Kenneth, Eriksson Emma M., Popovich Alexandra H., King Graham J. Genetic identification and genomic organization of factors affecting fruit texture. J Exp Bot. 2002 Oct;53(377):2065–2071. doi: 10.1093/jxb/erf087. [DOI] [PubMed] [Google Scholar]
  61. Smith David L., Abbott Judith A., Gross Kenneth C. Down-regulation of tomato beta-galactosidase 4 results in decreased fruit softening. Plant Physiol. 2002 Aug;129(4):1755–1762. doi: 10.1104/pp.011025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Theologis A. One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening. Cell. 1992 Jul 24;70(2):181–184. doi: 10.1016/0092-8674(92)90093-r. [DOI] [PubMed] [Google Scholar]
  64. Thompson AJ, Tor M, Barry CS, Vrebalov J, Orfila C, Jarvis MC, Giovannoni JJ, Grierson D, Seymour GB. Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant . Plant Physiol. 1999 Jun;120(2):383–390. doi: 10.1104/pp.120.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Tieman D. M., Ciardi J. A., Taylor M. G., Klee H. J. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J. 2001 Apr;26(1):47–58. doi: 10.1046/j.1365-313x.2001.01006.x. [DOI] [PubMed] [Google Scholar]
  66. Tieman D. M., Harriman R. W., Ramamohan G., Handa A. K. An Antisense Pectin Methylesterase Gene Alters Pectin Chemistry and Soluble Solids in Tomato Fruit. Plant Cell. 1992 Jun;4(6):667–679. doi: 10.1105/tpc.4.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Tieman D. M., Klee H. J. Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiol. 1999 May;120(1):165–172. doi: 10.1104/pp.120.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Tieman D. M., Taylor M. G., Ciardi J. A., Klee H. J. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5663–5668. doi: 10.1073/pnas.090550597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Van der Hoeven Rutger, Ronning Catherine, Giovannoni James, Martin Gregory, Tanksley Steven. Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell. 2002 Jul;14(7):1441–1456. doi: 10.1105/tpc.010478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Vrebalov Julia, Ruezinsky Diane, Padmanabhan Veeraragavan, White Ruth, Medrano Diana, Drake Rachel, Schuch Wolfgang, Giovannoni Jim. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science. 2002 Apr 12;296(5566):343–346. doi: 10.1126/science.1068181. [DOI] [PubMed] [Google Scholar]
  71. Wilkinson J. Q., Lanahan M. B., Clark D. G., Bleecker A. B., Chang C., Meyerowitz E. M., Klee H. J. A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol. 1997 May;15(5):444–447. doi: 10.1038/nbt0597-444. [DOI] [PubMed] [Google Scholar]
  72. Wilkinson J. Q., Lanahan M. B., Conner T. W., Klee H. J. Identification of mRNAs with enhanced expression in ripening strawberry fruit using polymerase chain reaction differential display. Plant Mol Biol. 1995 Mar;27(6):1097–1108. doi: 10.1007/BF00020883. [DOI] [PubMed] [Google Scholar]
  73. Wilkinson J. Q., Lanahan M. B., Yen H. C., Giovannoni J. J., Klee H. J. An ethylene-inducible component of signal transduction encoded by never-ripe. Science. 1995 Dec 15;270(5243):1807–1809. doi: 10.1126/science.270.5243.1807. [DOI] [PubMed] [Google Scholar]
  74. Woolley L. C., James D. J., Manning K. Purification and properties of an endo-beta-1,4-glucanase from strawberry and down-regulation of the corresponding gene, cel1. Planta. 2001 Nov;214(1):11–21. doi: 10.1007/s004250100577. [DOI] [PubMed] [Google Scholar]
  75. Yao J., Dong Y., Morris B. A. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci U S A. 2001 Jan 23;98(3):1306–1311. doi: 10.1073/pnas.031502498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Yen H. C., Lee S., Tanksley S. D., Lanahan M. B., Klee H. J., Giovannoni J. J. The tomato Never-ripe locus regulates ethylene-inducible gene expression and is linked to a homolog of the Arabidopsis ETR1 gene. Plant Physiol. 1995 Apr;107(4):1343–1353. doi: 10.1104/pp.107.4.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Zhou D., Kalaitzís P., Mattoo A. K., Tucker M. L. The mRNA for an ETR1 homologue in tomato is constitutively expressed in vegetative and reproductive tissues. Plant Mol Biol. 1996 Mar;30(6):1331–1338. doi: 10.1007/BF00019564. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES