Skip to main content
The Plant Cell logoLink to The Plant Cell
. 2004 May 6;16(Suppl):S32–S45. doi: 10.1105/tpc.015933

Regulation of ovule development.

Debra J Skinner 1, Theresa A Hill 1, Charles S Gasser 1
PMCID: PMC2643397  PMID: 15131247

Full Text

The Full Text of this article is available as a PDF (483.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aida M., Ishida T., Tasaka M. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development. 1999 Apr;126(8):1563–1570. doi: 10.1242/dev.126.8.1563. [DOI] [PubMed] [Google Scholar]
  2. Alvarez-Buylla E. R., Pelaz S., Liljegren S. J., Gold S. E., Burgeff C., Ditta G. S., Ribas de Pouplana L., Martínez-Castilla L., Yanofsky M. F. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5328–5333. doi: 10.1073/pnas.97.10.5328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alvarez J., Smyth D. R. CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development. 1999 Jun;126(11):2377–2386. doi: 10.1242/dev.126.11.2377. [DOI] [PubMed] [Google Scholar]
  4. Angenent G. C., Franken J., Busscher M., van Dijken A., van Went J. L., Dons H. J., van Tunen A. J. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell. 1995 Oct;7(10):1569–1582. doi: 10.1105/tpc.7.10.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baker S. C., Robinson-Beers K., Villanueva J. M., Gaiser J. C., Gasser C. S. Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics. 1997 Apr;145(4):1109–1124. doi: 10.1093/genetics/145.4.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Balasubramanian S., Schneitz K. NOZZLE regulates proximal-distal pattern formation, cell proliferation and early sporogenesis during ovule development in Arabidopsis thaliana. Development. 2000 Oct;127(19):4227–4238. doi: 10.1242/dev.127.19.4227. [DOI] [PubMed] [Google Scholar]
  7. Balasubramanian Sureshkumar, Schneitz Kay. NOZZLE links proximal-distal and adaxial-abaxial pattern formation during ovule development in Arabidopsis thaliana. Development. 2002 Sep;129(18):4291–4300. doi: 10.1242/dev.129.18.4291. [DOI] [PubMed] [Google Scholar]
  8. Bowman J. L., Baum S. F., Eshed Y., Putterill J., Alvarez J. Molecular genetics of gynoecium development in Arabidopsis. Curr Top Dev Biol. 1999;45:155–205. doi: 10.1016/s0070-2153(08)60316-6. [DOI] [PubMed] [Google Scholar]
  9. Bowman J. L., Drews G. N., Meyerowitz E. M. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell. 1991 Aug;3(8):749–758. doi: 10.1105/tpc.3.8.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bowman J. L., Smyth D. R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development. 1999 Jun;126(11):2387–2396. doi: 10.1242/dev.126.11.2387. [DOI] [PubMed] [Google Scholar]
  11. Bowman J. L., Smyth D. R., Meyerowitz E. M. Genes directing flower development in Arabidopsis. Plant Cell. 1989 Jan;1(1):37–52. doi: 10.1105/tpc.1.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bowman John L., Eshed Yuval, Baum Stuart F. Establishment of polarity in angiosperm lateral organs. Trends Genet. 2002 Mar;18(3):134–141. doi: 10.1016/s0168-9525(01)02601-4. [DOI] [PubMed] [Google Scholar]
  13. Broadhvest J., Baker S. C., Gasser C. S. SHORT INTEGUMENTS 2 promotes growth during Arabidopsis reproductive development. Genetics. 2000 Jun;155(2):899–907. doi: 10.1093/genetics/155.2.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chaw S. M., Parkinson C. L., Cheng Y., Vincent T. M., Palmer J. D. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4086–4091. doi: 10.1073/pnas.97.8.4086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Clark S. E. Cell signalling at the shoot meristem. Nat Rev Mol Cell Biol. 2001 Apr;2(4):276–284. doi: 10.1038/35067079. [DOI] [PubMed] [Google Scholar]
  16. Colombo L., Franken J., Koetje E., van Went J., Dons H. J., Angenent G. C., van Tunen A. J. The petunia MADS box gene FBP11 determines ovule identity. Plant Cell. 1995 Nov;7(11):1859–1868. doi: 10.1105/tpc.7.11.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Conner J., Liu Z. LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12902–12907. doi: 10.1073/pnas.230352397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Elliott R. C., Betzner A. S., Huttner E., Oakes M. P., Tucker W. Q., Gerentes D., Perez P., Smyth D. R. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell. 1996 Feb;8(2):155–168. doi: 10.1105/tpc.8.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Favaro R., Immink R. G. H., Ferioli V., Bernasconi B., Byzova M., Angenent G. C., Kater M., Colombo L. Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants. Mol Genet Genomics. 2002 Sep 5;268(2):152–159. doi: 10.1007/s00438-002-0746-6. [DOI] [PubMed] [Google Scholar]
  20. Favaro Rebecca, Pinyopich Anusak, Battaglia Raffaella, Kooiker Maarten, Borghi Lorenzo, Ditta Gary, Yanofsky Martin F., Kater Martin M., Colombo Lucia. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell. 2003 Oct 10;15(11):2603–2611. doi: 10.1105/tpc.015123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ferrario Silvia, Immink Richard G. H., Shchennikova Anna, Busscher-Lange Jacqueline, Angenent Gerco C. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell. 2003 Apr;15(4):914–925. doi: 10.1105/tpc.010280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ferrándiz C., Pelaz S., Yanofsky M. F. Control of carpel and fruit development in Arabidopsis. Annu Rev Biochem. 1999;68:321–354. doi: 10.1146/annurev.biochem.68.1.321. [DOI] [PubMed] [Google Scholar]
  23. Fleming Andrew J. The mechanism of leaf morphogenesis. Planta. 2002 Nov 12;216(1):17–22. doi: 10.1007/s00425-002-0864-8. [DOI] [PubMed] [Google Scholar]
  24. Franks Robert G., Wang Chunxin, Levin Joshua Z., Liu Zhongchi. SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG. Development. 2002 Jan;129(1):253–263. doi: 10.1242/dev.129.1.253. [DOI] [PubMed] [Google Scholar]
  25. Gaiser J. C., Robinson-Beers K., Gasser C. S. The Arabidopsis SUPERMAN Gene Mediates Asymmetric Growth of the Outer Integument of Ovules. Plant Cell. 1995 Mar;7(3):333–345. doi: 10.1105/tpc.7.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gasser C. S., Broadhvest J., Hauser B. A. GENETIC ANALYSIS OF OVULE DEVELOPMENT. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):1–24. doi: 10.1146/annurev.arplant.49.1.1. [DOI] [PubMed] [Google Scholar]
  27. Golden Teresa A., Schauer Stephen E., Lang Jean D., Pien Stéphane, Mushegian Arcady R., Grossniklaus Ueli, Meinke David W., Ray Animesh. SHORT INTEGUMENTS1/SUSPENSOR1/CARPEL FACTORY, a Dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant Physiol. 2002 Oct;130(2):808–822. doi: 10.1104/pp.003491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Gross-Hardt Rita, Lenhard Michael, Laux Thomas. WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes Dev. 2002 May 1;16(9):1129–1138. doi: 10.1101/gad.225202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Grossniklaus U., Schneitz K. The molecular and genetic basis of ovule and megagametophyte development. Semin Cell Dev Biol. 1998 Apr;9(2):227–238. doi: 10.1006/scdb.1997.0214. [DOI] [PubMed] [Google Scholar]
  30. Hauser B. A., He J. Q., Park S. O., Gasser C. S. TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development. 2000 May;127(10):2219–2226. doi: 10.1242/dev.127.10.2219. [DOI] [PubMed] [Google Scholar]
  31. Hauser B. A., Villanueva J. M., Gasser C. S. Arabidopsis TSO1 regulates directional processes in cells during floral organogenesis. Genetics. 1998 Sep;150(1):411–423. doi: 10.1093/genetics/150.1.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Honma T., Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature. 2001 Jan 25;409(6819):525–529. doi: 10.1038/35054083. [DOI] [PubMed] [Google Scholar]
  33. Immink R. G. H., Ferrario S., Busscher-Lange J., Kooiker M., Busscher M., Angenent G. C. Analysis of the petunia MADS-box transcription factor family. Mol Genet Genomics. 2003 Jan 15;268(5):598–606. doi: 10.1007/s00438-002-0781-3. [DOI] [PubMed] [Google Scholar]
  34. Immink Richard G. H., Gadella Theodorus W. J., Jr, Ferrario Silvia, Busscher Marco, Angenent Gerco C. Analysis of MADS box protein-protein interactions in living plant cells. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2416–2421. doi: 10.1073/pnas.042677699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Jacobsen S. E., Running M. P., Meyerowitz E. M. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development. 1999 Dec;126(23):5231–5243. doi: 10.1242/dev.126.23.5231. [DOI] [PubMed] [Google Scholar]
  36. Jenik P. D., Irish V. F. Regulation of cell proliferation patterns by homeotic genes during Arabidopsis floral development. Development. 2000 Mar;127(6):1267–1276. doi: 10.1242/dev.127.6.1267. [DOI] [PubMed] [Google Scholar]
  37. Keck Emma, McSteen Paula, Carpenter Rosemary, Coen Enrico. Separation of genetic functions controlling organ identity in flowers. EMBO J. 2003 Mar 3;22(5):1058–1066. doi: 10.1093/emboj/cdg097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Klucher K. M., Chow H., Reiser L., Fischer R. L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell. 1996 Feb;8(2):137–153. doi: 10.1105/tpc.8.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Krizek B. A. Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Dev Genet. 1999 Sep;25(3):224–236. doi: 10.1002/(SICI)1520-6408(1999)25:3<224::AID-DVG5>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  40. Krizek B. A., Prost V., Macias A. AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS. Plant Cell. 2000 Aug;12(8):1357–1366. doi: 10.1105/tpc.12.8.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Kumaran Mande K., Bowman John L., Sundaresan Venkatesan. YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. Plant Cell. 2002 Nov;14(11):2761–2770. doi: 10.1105/tpc.004911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Lenhard Michael, Jürgens Gerd, Laux Thomas. The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development. 2002 Jul;129(13):3195–3206. doi: 10.1242/dev.129.13.3195. [DOI] [PubMed] [Google Scholar]
  43. Liljegren S. J., Ditta G. S., Eshed Y., Savidge B., Bowman J. L., Yanofsky M. F. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature. 2000 Apr 13;404(6779):766–770. doi: 10.1038/35008089. [DOI] [PubMed] [Google Scholar]
  44. Liu Z., Franks R. G., Klink V. P. Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell. 2000 Oct;12(10):1879–1892. doi: 10.1105/tpc.12.10.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Liu Z., Meyerowitz E. M. LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development. 1995 Apr;121(4):975–991. doi: 10.1242/dev.121.4.975. [DOI] [PubMed] [Google Scholar]
  46. Liu Z., Running M. P., Meyerowitz E. M. TSO1 functions in cell division during Arabidopsis flower development. Development. 1997 Feb;124(3):665–672. doi: 10.1242/dev.124.3.665. [DOI] [PubMed] [Google Scholar]
  47. Long J. A., Barton M. K. The development of apical embryonic pattern in Arabidopsis. Development. 1998 Aug;125(16):3027–3035. doi: 10.1242/dev.125.16.3027. [DOI] [PubMed] [Google Scholar]
  48. Long J. A., Moan E. I., Medford J. I., Barton M. K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature. 1996 Jan 4;379(6560):66–69. doi: 10.1038/379066a0. [DOI] [PubMed] [Google Scholar]
  49. Long J., Barton M. K. Initiation of axillary and floral meristems in Arabidopsis. Dev Biol. 2000 Feb 15;218(2):341–353. doi: 10.1006/dbio.1999.9572. [DOI] [PubMed] [Google Scholar]
  50. Lopez-Dee Z. P., Wittich P., Enrico Pè M., Rigola D., Del Buono I., Gorla M. S., Kater M. M., Colombo L. OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev Genet. 1999 Sep;25(3):237–244. doi: 10.1002/(SICI)1520-6408(1999)25:3<237::AID-DVG6>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  51. Ma H., Yanofsky M. F., Meyerowitz E. M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 1991 Mar;5(3):484–495. doi: 10.1101/gad.5.3.484. [DOI] [PubMed] [Google Scholar]
  52. Mandel M. A., Bowman J. L., Kempin S. A., Ma H., Meyerowitz E. M., Yanofsky M. F. Manipulation of flower structure in transgenic tobacco. Cell. 1992 Oct 2;71(1):133–143. doi: 10.1016/0092-8674(92)90272-e. [DOI] [PubMed] [Google Scholar]
  53. McConnell J. R., Barton M. K. Leaf polarity and meristem formation in Arabidopsis. Development. 1998 Aug;125(15):2935–2942. doi: 10.1242/dev.125.15.2935. [DOI] [PubMed] [Google Scholar]
  54. Meister Robert J., Kotow Louren M., Gasser Charles S. SUPERMAN attenuates positive INNER NO OUTER autoregulation to maintain polar development of Arabidopsis ovule outer integuments. Development. 2002 Sep;129(18):4281–4289. doi: 10.1242/dev.129.18.4281. [DOI] [PubMed] [Google Scholar]
  55. Meister Robert J., Williams Luis A., Monfared Mona M., Gallagher Thomas L., Kraft Edward A., Nelson Christian G., Gasser Charles S. Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter. Plant J. 2004 Feb;37(3):426–438. doi: 10.1046/j.1365-313x.2003.01971.x. [DOI] [PubMed] [Google Scholar]
  56. Modrusan Z., Reiser L., Feldmann K. A., Fischer R. L., Haughn G. W. Homeotic Transformation of Ovules into Carpel-like Structures in Arabidopsis. Plant Cell. 1994 Mar;6(3):333–349. doi: 10.1105/tpc.6.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Pelaz S., Ditta G. S., Baumann E., Wisman E., Yanofsky M. F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature. 2000 May 11;405(6783):200–203. doi: 10.1038/35012103. [DOI] [PubMed] [Google Scholar]
  58. Pelaz S., Gustafson-Brown C., Kohalmi S. E., Crosby W. L., Yanofsky M. F. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 2001 May;26(4):385–394. doi: 10.1046/j.1365-313x.2001.2641042.x. [DOI] [PubMed] [Google Scholar]
  59. Pelaz S., Tapia-López R., Alvarez-Buylla E. R., Yanofsky M. F. Conversion of leaves into petals in Arabidopsis. Curr Biol. 2001 Feb 6;11(3):182–184. doi: 10.1016/s0960-9822(01)00024-0. [DOI] [PubMed] [Google Scholar]
  60. Pinyopich Anusak, Ditta Gary S., Savidge Beth, Liljegren Sarah J., Baumann Elvira, Wisman Ellen, Yanofsky Martin F. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature. 2003 Jul 3;424(6944):85–88. doi: 10.1038/nature01741. [DOI] [PubMed] [Google Scholar]
  61. Ray A., Lang J. D., Golden T., Ray S. SHORT INTEGUMENT (SIN1), a gene required for ovule development in Arabidopsis, also controls flowering time. Development. 1996 Sep;122(9):2631–2638. doi: 10.1242/dev.122.9.2631. [DOI] [PubMed] [Google Scholar]
  62. Ray A., Robinson-Beers K., Ray S., Baker S. C., Lang J. D., Preuss D., Milligan S. B., Gasser C. S. Arabidopsis floral homeotic gene BELL (BEL1) controls ovule development through negative regulation of AGAMOUS gene (AG). Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5761–5765. doi: 10.1073/pnas.91.13.5761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Ray S., Golden T., Ray A. Maternal effects of the short integument mutation on embryo development in Arabidopsis. Dev Biol. 1996 Nov 25;180(1):365–369. doi: 10.1006/dbio.1996.0309. [DOI] [PubMed] [Google Scholar]
  64. Reiser L., Modrusan Z., Margossian L., Samach A., Ohad N., Haughn G. W., Fischer R. L. The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell. 1995 Dec 1;83(5):735–742. doi: 10.1016/0092-8674(95)90186-8. [DOI] [PubMed] [Google Scholar]
  65. Robinson-Beers K., Pruitt R. E., Gasser C. S. Ovule Development in Wild-Type Arabidopsis and Two Female-Sterile Mutants. Plant Cell. 1992 Oct;4(10):1237–1249. doi: 10.1105/tpc.4.10.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Roe J. L., Durfee T., Zupan J. R., Repetti P. P., McLean B. G., Zambryski P. C. TOUSLED is a nuclear serine/threonine protein kinase that requires a coiled-coil region for oligomerization and catalytic activity. J Biol Chem. 1997 Feb 28;272(9):5838–5845. doi: 10.1074/jbc.272.9.5838. [DOI] [PubMed] [Google Scholar]
  67. Roe J. L., Nemhauser J. L., Zambryski P. C. TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis. Plant Cell. 1997 Mar;9(3):335–353. doi: 10.1105/tpc.9.3.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Roe J. L., Rivin C. J., Sessions R. A., Feldmann K. A., Zambryski P. C. The Tousled gene in A. thaliana encodes a protein kinase homolog that is required for leaf and flower development. Cell. 1993 Dec 3;75(5):939–950. doi: 10.1016/0092-8674(93)90537-z. [DOI] [PubMed] [Google Scholar]
  69. Rounsley S. D., Ditta G. S., Yanofsky M. F. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell. 1995 Aug;7(8):1259–1269. doi: 10.1105/tpc.7.8.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Schauer Stephen E., Jacobsen Steven E., Meinke David W., Ray Animesh. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci. 2002 Nov;7(11):487–491. doi: 10.1016/s1360-1385(02)02355-5. [DOI] [PubMed] [Google Scholar]
  71. Schiefthaler U., Balasubramanian S., Sieber P., Chevalier D., Wisman E., Schneitz K. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11664–11669. doi: 10.1073/pnas.96.20.11664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Schneitz K., Baker S. C., Gasser C. S., Redweik A. Pattern formation and growth during floral organogenesis: HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana. Development. 1998 Jul;125(14):2555–2563. doi: 10.1242/dev.125.14.2555. [DOI] [PubMed] [Google Scholar]
  73. Schneitz K., Hülskamp M., Kopczak S. D., Pruitt R. E. Dissection of sexual organ ontogenesis: a genetic analysis of ovule development in Arabidopsis thaliana. Development. 1997 Apr;124(7):1367–1376. doi: 10.1242/dev.124.7.1367. [DOI] [PubMed] [Google Scholar]
  74. Siegfried K. R., Eshed Y., Baum S. F., Otsuga D., Drews G. N., Bowman J. L. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development. 1999 Sep;126(18):4117–4128. doi: 10.1242/dev.126.18.4117. [DOI] [PubMed] [Google Scholar]
  75. Skinner D. J., Baker S. C., Meister R. J., Broadhvest J., Schneitz K., Gasser C. S. The Arabidopsis HUELLENLOS gene, which is essential for normal ovule development, encodes a mitochondrial ribosomal protein. Plant Cell. 2001 Dec;13(12):2719–2730. doi: 10.1105/tpc.010323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Smyth D. R., Bowman J. L., Meyerowitz E. M. Early flower development in Arabidopsis. Plant Cell. 1990 Aug;2(8):755–767. doi: 10.1105/tpc.2.8.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Takada S., Hibara K., Ishida T., Tasaka M. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development. 2001 Apr;128(7):1127–1135. doi: 10.1242/dev.128.7.1127. [DOI] [PubMed] [Google Scholar]
  78. Theissen G., Becker A., Di Rosa A., Kanno A., Kim J. T., Münster T., Winter K. U., Saedler H. A short history of MADS-box genes in plants. Plant Mol Biol. 2000 Jan;42(1):115–149. [PubMed] [Google Scholar]
  79. Theissen G., Kim J. T., Saedler H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol. 1996 Nov;43(5):484–516. doi: 10.1007/BF02337521. [DOI] [PubMed] [Google Scholar]
  80. Tsukaya Hirokazu. Organ shape and size: a lesson from studies of leaf morphogenesis. Curr Opin Plant Biol. 2003 Feb;6(1):57–62. doi: 10.1016/s1369526602000055. [DOI] [PubMed] [Google Scholar]
  81. Villanueva J. M., Broadhvest J., Hauser B. A., Meister R. J., Schneitz K., Gasser C. S. INNER NO OUTER regulates abaxial- adaxial patterning in Arabidopsis ovules. Genes Dev. 1999 Dec 1;13(23):3160–3169. doi: 10.1101/gad.13.23.3160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Vroemen Casper W., Mordhorst Andreas P., Albrecht Cathy, Kwaaitaal Mark A. C. J., de Vries Sacco C. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell. 2003 Jul;15(7):1563–1577. doi: 10.1105/tpc.012203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Western T. L., Haughn G. W. BELL1 and AGAMOUS genes promote ovule identity in Arabidopsis thaliana. Plant J. 1999 May;18(3):329–336. doi: 10.1046/j.1365-313x.1999.00448.x. [DOI] [PubMed] [Google Scholar]
  84. Yang W. C., Ye D., Xu J., Sundaresan V. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev. 1999 Aug 15;13(16):2108–2117. doi: 10.1101/gad.13.16.2108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Yanofsky M. F., Ma H., Bowman J. L., Drews G. N., Feldmann K. A., Meyerowitz E. M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 1990 Jul 5;346(6279):35–39. doi: 10.1038/346035a0. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES