Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1983 Dec;42(3):890–899. doi: 10.1128/iai.42.3.890-899.1983

Monocyte-derived soluble suppressor factor(s) in patients with lepromatous leprosy.

M Sathish, L K Bhutani, A K Sharma, I Nath
PMCID: PMC264383  PMID: 6605932

Abstract

Peripheral blood monocytes from polar lepromatous leprosy (LL) patients were unable to support Mycobacterium leprae-induced in vitro lymphoproliferation of HLA-D-matched T cells from tuberculoid leprosy subjects, whereas those from responder individuals were able to do so. Monocyte-rich adherent cells from untreated LL patients released de novo soluble factors which inhibited antigen-induced lymphoproliferation to a greater extent and mitogenic responses to a lesser extent. Suppressive activity varied in different LL patients. However, the degree of suppression was similar in soluble factors obtained de novo and after treatment of adherent cells with heat-killed and freshly extracted, cryopreserved M. leprae. Treated patients showed less inhibition with de novo released soluble factors (27 +/- 7.7%) as compared to parallel soluble factors obtained after antigen treatment (44 +/- 4.8%) or with de novo soluble factors from untreated LL patients (62 +/- 14.2%). Similar supernatants from tuberculoid individuals showed no or insignificant effects on antigen-induced lymphoproliferation. The suppressive activity of LL soluble factors was produced for up to 72 h, was heat stable at 56 degrees C for 30 min, was indomethacin resistant, and resided in the greater than 25,000 molecular weight fraction.

Full text

PDF
890

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birdi T. J., Salgame P. R., Mahadevan P. R., Antia N. H. Role of macrophages in defective cell mediated immunity in lepromatous leprosy. II. Macrophage and lymphocyte interaction. Int J Lepr Other Mycobact Dis. 1980 Jun;48(2):178–182. [PubMed] [Google Scholar]
  2. Bullock W. E., Carlson E. M., Gershon R. K. The evolution of immunosuppressive cell populations in experimental mycobacterial infection. J Immunol. 1978 May;120(5):1709–1716. [PubMed] [Google Scholar]
  3. Bullock W. E., Watson S., Nelson K. E., Schauf V., Makonkawkeyoon S., Jacobson R. R. Aberrant immunoregulatory control of B lymphocyte function in lepromatous leprosy. Clin Exp Immunol. 1982 Jul;49(1):105–114. [PMC free article] [PubMed] [Google Scholar]
  4. Ellner J. J. Suppressor adherent cells in human tuberculosis. J Immunol. 1978 Dec;121(6):2573–2579. [PubMed] [Google Scholar]
  5. Goodwin J. S., Webb D. R. Regulation of the immune response by prostaglandins. Clin Immunol Immunopathol. 1980 Jan;15(1):106–122. doi: 10.1016/0090-1229(80)90024-0. [DOI] [PubMed] [Google Scholar]
  6. Grosskinsky C. M., Askonas B. A. Macrophages as primary target cells and mediators of immune dysfunction in African trypanosomiasis. Infect Immun. 1981 Jul;33(1):149–155. doi: 10.1128/iai.33.1.149-155.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirschberg H. The role of macrophages in the lymphoproliferative response to Mycobacterium leprae in vitro. Clin Exp Immunol. 1978 Oct;34(1):46–51. [PMC free article] [PubMed] [Google Scholar]
  8. Katz P., Fauci A. S. Inhibition of polyclonal B-cell activation by suppressor monocytes in patients with sarcoidosis. Clin Exp Immunol. 1978 Jun;32(3):554–562. [PMC free article] [PubMed] [Google Scholar]
  9. Klimpel G. R., Henney C. S. BCG-induced suppressor cells. I. Demonstration of a macrophage-like suppressor cell that inhibits cytotoxic T cell generation in vitro. J Immunol. 1978 Feb;120(2):563–569. [PubMed] [Google Scholar]
  10. Kung J. T., Brooks S. B., Jakway J. P., Leonard L. L., Talmage D. W. Suppression of in vitro cytotoxic response by macrophages due to induced arginase. J Exp Med. 1977 Sep 1;146(3):665–672. doi: 10.1084/jem.146.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Modlin R. L., Hofman F. M., Meyer P. R., Sharma O. P., Taylor C. R., Rea T. H. In situ demonstration of T lymphocyte subsets in granulomatous inflammation: leprosy, rhinoscleroma and sarcoidosis. Clin Exp Immunol. 1983 Mar;51(3):430–438. [PMC free article] [PubMed] [Google Scholar]
  12. Narayanan R. B., Bhutani L. K., Sharma A. K., Nath I. T cell subsets in leprosy lesions: in situ characterization using monoclonal antibodies. Clin Exp Immunol. 1983 Mar;51(3):421–429. [PMC free article] [PubMed] [Google Scholar]
  13. Nath I., Narayanan R. B., Mehra N. K., Sharma A. K., Gupte M. D. Concanavalin A induced suppressor activity in human leprosy. J Clin Lab Immunol. 1979 Nov;2(4):319–324. [PubMed] [Google Scholar]
  14. Nath I., Singh R. The suppressive effect of M. leprae on the in vitro proliferative responses of lymphocytes from patients with leprosy. Clin Exp Immunol. 1980 Sep;41(3):406–414. [PMC free article] [PubMed] [Google Scholar]
  15. Nath I., Van Rood J. J., Mehra N. K., Vaidya M. C. Natural suppressor cells in human leprosy: the role of HLA-D-identical peripheral lymphocytes and macrophages in the in vitro modulation of lymphoproliferative responses. Clin Exp Immunol. 1980 Nov;42(2):203–210. [PMC free article] [PubMed] [Google Scholar]
  16. Opitz H. G., Niethammer D., Lemke H., Flad H. D., Huget R. Inhibition of 3H-thymidine incorporation of lymphocytes by a soluble factor from macrophages. Cell Immunol. 1975 Apr;16(2):379–388. doi: 10.1016/0008-8749(75)90126-4. [DOI] [PubMed] [Google Scholar]
  17. Ottesen E. A. Modulation of the host response in human schistosomiasis. I. Adherent suppressor cells that inhibit lymphocyte proliferative responses to parasite antigens. J Immunol. 1979 Oct;123(4):1639–1644. [PubMed] [Google Scholar]
  18. Page R. C., Davies P., Allison A. C. The macrophage as a secretory cell. Int Rev Cytol. 1978;52:119–157. doi: 10.1016/s0074-7696(08)60755-x. [DOI] [PubMed] [Google Scholar]
  19. Petersen E. A., Neva F. A., Oster C. N., Bogaert Diaz H. Specific inhibition of lymphocyte-proliferation responses by adherent suppressor cells in diffuse cutaneous leishmaniasis. N Engl J Med. 1982 Feb 18;306(7):387–392. doi: 10.1056/NEJM198202183060702. [DOI] [PubMed] [Google Scholar]
  20. Ridley D. S., Jopling W. H. Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis. 1966 Jul-Sep;34(3):255–273. [PubMed] [Google Scholar]
  21. Salgame P. R., Birdi T. J., Mahadevan P. R., Antia N. H. Role of macrophages in defective cell mediated immunity in lepromatous leprosy. I. Factor(s) from macrophages affecting protein synthesis and lymphocyte transformation. Int J Lepr Other Mycobact Dis. 1980 Jun;48(2):172–177. [PubMed] [Google Scholar]
  22. Singh S., Nath I. Reduction of a subset of T cells bearing Fc receptors for IgG in lepromatous leprosy. Int Arch Allergy Appl Immunol. 1980;62(1):81–85. doi: 10.1159/000232490. [DOI] [PubMed] [Google Scholar]
  23. Stobo J. D. Immunosuppression in man: suppression by macrophages can be mediated by interactions with regulatory T cells. J Immunol. 1977 Sep;119(3):918–924. [PubMed] [Google Scholar]
  24. Stoner G. L., Mshana R. N., Touw J., Belehu A. Studies on the defect in cell-mediated immunity in lepromatous leprosy using HLA-D-identical siblings. Absence of circulating suppressor cells and evidence that the defect is in the T-lymphocyte, rather than the monocyte, population. Scand J Immunol. 1982 Jan;15(1):33–48. doi: 10.1111/j.1365-3083.1982.tb00619.x. [DOI] [PubMed] [Google Scholar]
  25. Turcotte R., Lemieux S. Mechanisms of action of Mycobacterium bovis BCG-induced suppressor cells in mitogen-induced blastogenesis. Infect Immun. 1982 Apr;36(1):263–270. doi: 10.1128/iai.36.1.263-270.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Turk J. L., Bryceson A. D. Immunological phenomena in leprosy and related diseases. Adv Immunol. 1971;13:209–266. doi: 10.1016/s0065-2776(08)60185-6. [DOI] [PubMed] [Google Scholar]
  27. Van Voorhis W. C., Kaplan G., Sarno E. N., Horwitz M. A., Steinman R. M., Levis W. R., Nogueira N., Hair L. S., Gattass C. R., Arrick B. A. The cutaneous infiltrates of leprosy: cellular characteristics and the predominant T-cell phenotypes. N Engl J Med. 1982 Dec 23;307(26):1593–1597. doi: 10.1056/NEJM198212233072601. [DOI] [PubMed] [Google Scholar]
  28. Wadee A. A., Rabson A. R. Production of a suppressor factor by adherent cells from Mycobacterium tuberculosis-infected guinea-pigs. Clin Exp Immunol. 1981 Aug;45(2):427–432. [PMC free article] [PubMed] [Google Scholar]
  29. Wadee A. A., Sher R., Rabson A. R. Production of a suppressor factor by human adherent cells treated with mycobacteria. J Immunol. 1980 Sep;125(3):1380–1386. [PubMed] [Google Scholar]
  30. Watson S. R., Sljivić V. S., Brown I. N. Defect of macrophage function in the antibody response to sheep erythrocytes in systemic Mycobacterium lepraemurium infection. Nature. 1975 Jul 17;256(5514):206–208. doi: 10.1038/256206b0. [DOI] [PubMed] [Google Scholar]
  31. Yam L. T., Li C. Y., Crosby W. H. Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol. 1971 Mar;55(3):283–290. doi: 10.1093/ajcp/55.3.283. [DOI] [PubMed] [Google Scholar]
  32. de Vries R. R., Mehra N. K., Vaidya M. C., Gupte M. D., Meera Khan P., Van Rood J. J. HLA-linked control of susceptibility to tuberculoid leprosy and association with HLA-DR types. Tissue Antigens. 1980 Oct;16(4):294–304. doi: 10.1111/j.1399-0039.1980.tb00309.x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES