Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1983 Dec;42(3):1067–1072. doi: 10.1128/iai.42.3.1067-1072.1983

Lysis of herpesvirus-infected cells by macrophages activated with free or liposome-encapsulated lymphokine produced by a murine T cell hybridoma.

W C Koff, S D Showalter, D A Seniff, B Hampar
PMCID: PMC264408  PMID: 6358037

Abstract

Thioglycolate-induced mouse peritoneal macrophages were activated in vitro by the lymphokine designated macrophage-activating factor (MAF) produced by a murine T cell hybridoma to lyse herpes simplex virus type 2 (HSV-2)-infected murine target cells. Comparison of uninfected BALB/c 10E2 cells with HSV-2-infected 10E2 cells showed that macrophages activated with MAF selectively destroyed HSV-2-infected cells and left uninfected cells unharmed, as measured by an 18-h 51Cr-release assay. In contrast, macrophages treated with medium were as efficient as MAF-activated macrophages in suppressing the production of HSV-2 from virus-infected cells. These findings suggest that macrophages must attain an activated state to lyse HSV-2-infected cells. Finally, incubation of macrophages with liposomes containing MAF was shown to be a highly efficient method for activation of macrophages against HSV-2 infected cells. The ability to selectively destroy herpesvirus-infected cells in vitro by macrophages activated with liposome-encapsulated MAF suggests that the therapeutic efficacy of this treatment in vivo should be evaluated.

Full text

PDF
1067

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chapes S. K., Tompkins W. A. Cytotoxic macrophages induced in hamsters by vaccinia virus: selective cytotoxicity for virus-infected targets by macrophages collected late after immunization. J Immunol. 1979 Jul;123(1):303–310. [PubMed] [Google Scholar]
  2. Cohen D. A., Bubel H. C. Induction of resistance to ectromelia virus infection by corynebacterium parvum in murine peritoneal macrophages. J Reticuloendothel Soc. 1983 Jan;33(1):35–46. [PubMed] [Google Scholar]
  3. Erickson K. L., Cicurel L., Gruys E., Fidler I. J. Murine T-cell hybridomas that produce lymphokine with macrophage-activating factor activity as a constitutive product. Cell Immunol. 1982 Sep 1;72(1):195–201. doi: 10.1016/0008-8749(82)90297-0. [DOI] [PubMed] [Google Scholar]
  4. Fidler I. J., Raz A., Fogler W. E., Hoyer L. C., Poste G. The role of plasma membrane receptors and the kinetics of macrophage activation by lymphokines encapsulated in liposomes. Cancer Res. 1981 Feb;41(2):495–504. [PubMed] [Google Scholar]
  5. Fidler I. J., Raz A., Fogler W. E., Kirsh R., Bugelski P., Poste G. Design of liposomes to improve delivery of macrophage-augmenting agents to alveolar macrophages. Cancer Res. 1980 Dec;40(12):4460–4466. [PubMed] [Google Scholar]
  6. Fidler I. J., Sone S., Fogler W. E., Barnes Z. L. Eradication of spontaneous metastases and activation of alveolar macrophages by intravenous injection of liposomes containing muramyl dipeptide. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1680–1684. doi: 10.1073/pnas.78.3.1680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fidler I. J. Therapy of spontaneous metastases by intravenous injection of liposomes containing lymphokines. Science. 1980 Jun 27;208(4451):1469–1471. doi: 10.1126/science.7384789. [DOI] [PubMed] [Google Scholar]
  8. Fogler W. E., Raz A., Fidler I. J. In situ activation of murine macrophages by liposomes containing lymphokines. Cell Immunol. 1980 Jul 15;53(1):214–219. doi: 10.1016/0008-8749(80)90440-2. [DOI] [PubMed] [Google Scholar]
  9. Fraser-Smith E. B., Eppstein D. A., Larsen M. A., Matthews T. R. Protective effect of a muramyl dipeptide analog encapsulated in or mixed with liposomes against Candida albicans infection. Infect Immun. 1983 Jan;39(1):172–178. doi: 10.1128/iai.39.1.172-178.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hampar B., Boyd A. L., Derge J. G., Zweig M., Eader L., Showalter S. D. Comparison of properties of mouse cells transformed spontaneously by ultraviolet light-irradiated herpes simplex virus or by simian virus 40. Cancer Res. 1980 Jul;40(7):2213–2222. [PubMed] [Google Scholar]
  11. Harris N. S., Feinstein R. A new limulus assay for the detection of endotoxin. J Trauma. 1977 Sep;17(9):714–718. doi: 10.1097/00005373-197709000-00008. [DOI] [PubMed] [Google Scholar]
  12. JOHNSON R. T. THE PATHOGENESIS OF HERPES VIRUS ENCEPHALITIS. II. A CELLULAR BASIS FOR THE DEVELOPMENT OF RESISTANCE WITH AGE. J Exp Med. 1964 Sep 1;120:359–374. doi: 10.1084/jem.120.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karnovsky M. L., Lazdins J. K. Biochemical criteria for activated macrophages. J Immunol. 1978 Sep;121(3):809–813. [PubMed] [Google Scholar]
  14. Kirchner H., Scott M. T., Hirt H. M., Munk K. Protection of mice against viral infection by Corynebacterium parvum and Bordetella pertussis. J Gen Virol. 1978 Oct;41(1):97–104. doi: 10.1099/0022-1317-41-1-97. [DOI] [PubMed] [Google Scholar]
  15. Kohl S., Drath D. B., Loo L. S. Murine cellular cytotoxicity to syngeneic and xenogeneic herpes simplex virus-infected cells. Infect Immun. 1982 Dec;38(3):1231–1241. doi: 10.1128/iai.38.3.1231-1241.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lawman M. J., Rouse B. T., Courtney R. J., Walker R. D. Cell-mediated immunity against herpes simplex induction of cytotoxic T lymphocytes. Infect Immun. 1980 Jan;27(1):133–139. doi: 10.1128/iai.27.1.133-139.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Letvin N. L., Kauffman R. S., Finberg R. An adherent cell lyses virus-infected targets: characterization, activation, and fine specificity of the cytotoxic cell. J Immunol. 1982 Dec;129(6):2396–2401. [PubMed] [Google Scholar]
  18. Mak N. K., Leung K. N., Ada G. L. The generation of 'cytotoxic' macrophages in mice during infection with influenza A or Sendai virus. Scand J Immunol. 1982 Jun;15(6):553–561. doi: 10.1111/j.1365-3083.1982.tb00683.x. [DOI] [PubMed] [Google Scholar]
  19. Mogensen S. C. Role of macrophages in natural resistance to virus infections. Microbiol Rev. 1979 Mar;43(1):1–26. doi: 10.1128/mr.43.1.1-26.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morahan P. S., Glasgow L. A., Crane J. L., Jr, Kern E. R. Comparison of antiviral and antitumor activity of activated macrophages. Cell Immunol. 1977 Feb;28(2):404–415. doi: 10.1016/0008-8749(77)90122-8. [DOI] [PubMed] [Google Scholar]
  21. Morahan P. S., Morse S. S., McGeorge M. G. Macrophage extrinsic antiviral activity during herpes simplex virus infection. J Gen Virol. 1980 Feb;46(2):291–300. doi: 10.1099/0022-1317-46-2-291. [DOI] [PubMed] [Google Scholar]
  22. Morse S. S., Morahan P. S. Activated macrophages mediate interferon-independent inhibition of herpes simplex virus. Cell Immunol. 1981 Feb;58(1):72–84. doi: 10.1016/0008-8749(81)90150-7. [DOI] [PubMed] [Google Scholar]
  23. Poste G., Bucana C., Raz A., Bugelski P., Kirsh R., Fidler I. J. Analysis of the fate of systemically administered liposomes and implications for their use in drug delivery. Cancer Res. 1982 Apr;42(4):1412–1422. [PubMed] [Google Scholar]
  24. Poste G., Kirsh R., Fogler W. E., Fidler I. J. Activation of tumoricidal properties in mouse macrophages by lymphokines encapsulated in liposomes. Cancer Res. 1979 Mar;39(3):881–892. [PubMed] [Google Scholar]
  25. Roder J. C., Lohmann-Matthes M. L., Domzig W., Kiessling R., Haller O. A functional comparison of tumor cell killing by activated macrophages and natural killer cells. Eur J Immunol. 1979 Apr;9(4):283–288. doi: 10.1002/eji.1830090407. [DOI] [PubMed] [Google Scholar]
  26. Ruco L. P., Meltzer M. S. Macrophage activation for tumor cytotoxicity: increased lymphokine responsiveness of peritoneal macrophages during acute inflammation. J Immunol. 1978 Mar;120(3):1054–1062. [PubMed] [Google Scholar]
  27. Selgrade M. K., Osborn J. E. Role of macrophages in resistance to murine cytomegalovirus. Infect Immun. 1974 Dec;10(6):1383–1390. doi: 10.1128/iai.10.6.1383-1390.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Showalter S. D., Zweig M., Hampar B. Monoclonal antibodies to herpes simplex virus type 1 proteins, including the immediate-early protein ICP 4. Infect Immun. 1981 Dec;34(3):684–692. doi: 10.1128/iai.34.3.684-692.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sone S., Poste G., Fidler I. J. Rat alveolar macrophages are susceptible to activation by free and liposome-encapsulated lymphokines. J Immunol. 1980 May;124(5):2197–2202. [PubMed] [Google Scholar]
  30. Stanwick T. L., Campbell D. E., Nahmias A. J. Cytotoxic properties of human monocyte-macrophages for human fibroblasts infected in herpes simplex virus: interferon production and augmentation. Cell Immunol. 1982 Jun;70(1):132–147. doi: 10.1016/0008-8749(82)90139-3. [DOI] [PubMed] [Google Scholar]
  31. Stohlman S. A., Woodward J. G., Frelinger J. A. Macrophage antiviral activity: extrinsic versus intrinsic activity. Infect Immun. 1982 May;36(2):672–677. doi: 10.1128/iai.36.2.672-677.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wildy P., Gell P. G., Rhodes J., Newton A. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase? Infect Immun. 1982 Jul;37(1):40–45. doi: 10.1128/iai.37.1.40-45.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zisman B., Hirsch M. S., Allison A. C. Selective effects of anti-macrophage serum, silica and anti-lymphocyte serum on pathogenesis of herpes virus infection of young adult mice. J Immunol. 1970 May;104(5):1155–1159. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES