Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2007 Oct 25;33(2):109–127. doi: 10.1007/s10867-007-9046-z

Efficiency of Resonance Energy Transfer in Homo-Oligomeric Complexes of Proteins

Valerică Raicu 1,
PMCID: PMC2646393  PMID: 19669544

Abstract

A theoretical model is proposed for the apparent efficiency of fluorescence (Förster) resonance energy transfer (FRET) in mixtures of free monomers and homo-oligomeric protein complexes of uniform size. The model takes into account possible pathways for transfer of optical excitations from single donors to multiple acceptors and from multiple donors (non-simultaneously) to single acceptors. This necessary departure from the standard theory has been suggested in the literature, but it has only been successfully implemented for a few particular cases, such as for particular geometries of the oligomers. The predictions of the present theoretical model differ significantly from those of the standard theory, with the exception of the case of dimers, for which agreement is observed. This model therefore provides new insights into the FRET behavior of oligomers comprising more than two monomers, and also suggests means for determining the size of oligomeric protein complexes as well as the proportion of associated and unassociated monomers.

Keywords: Förster (fluorescence) resonance energy transfer, FRET, Fluorescence theory, Protein – protein interaction, Protein association, Protein self-association, Interaction stoichiometry

References

  • 1.Gomperts, B.D., Kramer, I.M., Tatham, P.E.R.: Signal Transduction. Academic, New York (2002)
  • 2.Abbott, L.F., Regehr, W.G.: Synaptic computation. Nature 431, 796–803 (2004) [DOI] [PubMed]
  • 3.Milligan, G., Ramsay, D., Pascal, G., Carrillo, J.J.: GPCR dimerisation. Life Sci. 74(2–3), 181–188 (2003) [DOI] [PubMed]
  • 4.Angers, S., Salahpour, A., Bouvier, M.: Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42, 409–435 (2002) [DOI] [PubMed]
  • 5.Lippincott-Schwartz, J., Patterson, G.H.: Development and use of fluorescent protein markers in living cells. Science 300(5616), 87–91 (2003) [DOI] [PubMed]
  • 6.Zhang, J., Campbell, R.E., Ting, A.Y., Tsien, R.Y.: Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3(12), 906–918 (2002) [DOI] [PubMed]
  • 7.Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. 3rd edn. Springer, Berlin (2006)
  • 8.Clegg, R.M.: Fluorescence resonance energy transfer. In: Fluorescence Imaging Spectroscopy and Microscopy, Wang, X.F. and Herman, B. (eds). Wiley, New York (1996)
  • 9.Selvin, P.R.: Fluorescence resonance energy transfer. Methods Enzymol. 246, 300–334 (1995) [DOI] [PubMed]
  • 10.Gordon, G.W., Berry, G., Liang, X.H., Levine, B., Herman, B.: Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74(5), 2702–2713 (1998) [DOI] [PMC free article] [PubMed]
  • 11.Li, M., Reddy, L.G., Bennett, R., Silva, N.D., Jones, L.R., Thomas, D.D.: A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban. Biophys. J. 76, 2587–2599 (1999) [DOI] [PMC free article] [PubMed]
  • 12.Zacharias, D.A., Baird, G.S., Tsien, R.Y.: Recent advances in technology for measuring and manipulating cell signals. Curr. Opin. Cell Biol. 10, 416–421 (2000) [DOI] [PubMed]
  • 13.Kenworthy, A.K., Petranova, N., Edidin, M.: High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell. 11(5), 1645–1655 (2000) [DOI] [PMC free article] [PubMed]
  • 14.Xia, Z., Liu, Y.: Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 81(4), 2395–2402 (2001) [DOI] [PMC free article] [PubMed]
  • 15.Wouters, F.S., Verveer, P.J., Bastiaens, P.I.: Imaging biochemistry inside cells. Trends Cell Biol. 11(5), 203–211 (2001) [DOI] [PubMed]
  • 16.Hoppe, A., Christensen, K., Swanson, J.A.: Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys. J. 83(6), 3652–3664 (2002) [DOI] [PMC free article] [PubMed]
  • 17.Edelman, L.M., Cheong, R., Kahn, J.D.: Fluorescence resonance energy transfer over approximately 130 basepairs in hyperstable Lac repressor-DNA loops. Biophys. J. 84(2), 1131–1145 (2003) [DOI] [PMC free article] [PubMed]
  • 18.Lippincott-Schwartz, J., Snapp, E., Kenworthy, A.: Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2(6), 444–456 (2001) [DOI] [PubMed]
  • 19.Karpova, T.S., Baumann, C.T., He, L., Wu, X., Grammer, A., Lipsky, P., Hager, G.L., McNally, J.G.: Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J. Microsc. 209(1), 56–70 (2003) [DOI] [PubMed]
  • 20.Zal, T., Gascoine, N.R.: Photobleaching-corrected FRET efficiency imaging of live cells. Biophys. J. 86, 3923–3939 (2004) [DOI] [PMC free article] [PubMed]
  • 21.Raicu, V., Jansma, D.B., Miller, R.J.D., Friesen, J.D.: Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer. Biochem. J. 385, 265–277 (2005) [DOI] [PMC free article] [PubMed]
  • 22.Meyer, B.H., Segura, J.-M., Martinez, K.L., Hovius, R., George, N., Johnsson, K., Vogel, H.: FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl. Acad. Sci. U. S. A. 103(7), 2138–2143 (2006) [DOI] [PMC free article] [PubMed]
  • 23.Elangovan, M., Day, R.N., Periasamy, A.: Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell. J. Microsc. 205(1), 3–14 (2002) [DOI] [PubMed]
  • 24.Chen, H., Puhl, H.R., Koushik, S., Vogel, S., Ikeda, S.: Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys. J. 91(5), L39–L41 (2006) [DOI] [PMC free article] [PubMed]
  • 25.Adair, B.D., Engelman, D.M.: Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study. Biochemistry 33(18), 5539–5544 (1994) [DOI] [PubMed]
  • 26.Goldsmith, P., Backlund, P.S., Jr, Rossiter, K., Carter, A., Milligan, G., Unson, C.G., Spiegel, A.: Purification of heterotrimeric GTP-binding proteins from brain: identification of a novel form of Go. Biochemistry 27(18), 7085–7090 (1988) [DOI] [PubMed]
  • 27.Moens, P.D., Yee, D.J., dos Remedios, C.G.: Determination of the radial coordinate of Cys-374 in F-actin using fluorescence resonance energy transfer spectroscopy: Effect of phalloidin on polymer assembly. Biochemistry 33(44), 13102–13108 (1994) [DOI] [PubMed]
  • 28.Watrob, H.M., Pan, C.P., Barkley, M.D.: Two-step FRET as a structural tool. J. Am. Chem. Soc. 125(24), 7336–7343 (2003) [DOI] [PubMed]
  • 29.Watrob, H., Liu, W., Chen, Y., Bartlett, S.G., Ben-Jacobson, L., Barkley, M.D.: Solution conformation of EcoRI restriction endonuclease changes upon binding of cognate DNA and Mg2+ cofactor. Biochemistry 40(3), 683–692 (2001) [DOI] [PubMed]
  • 30.Sawyer, W.H., Chan, R.Y., Eccleston, J.F., Davidson, B.E., Samat, S.A., Yan, Y.: Distances between DNA and ATP binding sites in the TyrR–DNA complex. Biochemistry 39(19), 5653–5661 (2000) [DOI] [PubMed]
  • 31.Wimley, W.C., White, S.H.: Determining the membrane topology of peptides by fluorescence quenching. Biochemistry 39(1), 161–170 (2000) [DOI] [PubMed]
  • 32.Forde, T.S., Hanley, Q.S.: Following FRET through five energy transfer steps: spectroscopic photobleaching, recovery of spectra, and a sequential mechanism of FRET. Photochem. Photobiol. Sci. 4, 609–616 (2005) [DOI] [PubMed]
  • 33.Wolber, P.K., Hudson, B.S.: An analytic solution to the Förster energy transfer problem in two dimensions. Biophys. J. 28(2), 197–210 (1979) [DOI] [PMC free article] [PubMed]
  • 34.Dewey, T.G., Hammes, G.G.: Calculation on fluorescence resonance energy transfer on surfaces. Biophys. J. 32(3), 1023–1035 (1980) [DOI] [PMC free article] [PubMed]
  • 35.Song, L., Hennink, E.J., Young, I.T., Tanke, H.J.: Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J. 68(6), 2588–2600 (1995) [DOI] [PMC free article] [PubMed]
  • 36.Kubitscheck, U., Schweitzer-Stenner, R., Arndt-Jovin, D.J., Jovin, T.M., Pecht, I.: Distribution of type I Fc-receptors on the surface of mast cells probed by fluorescence resonance energy transfer. Biophys. J. 64, 110–120 (1993) [DOI] [PMC free article] [PubMed]
  • 37.Post, J.N., Lidke, K.A., Rieger, B., Arndt-Jovin, D.J.: One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos. FEBS Lett. 579, 325–330 (2005) [DOI] [PubMed]
  • 38.Denk, W., Strickler, J.H., Webb, W.W.: Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990) [DOI] [PubMed]
  • 39.Vereb, G., Jares-Erijman, E., Selvin, P.R., Jovin, T.M.: Temporally and spectrally resolved imaging microscopy of lanthanide chelates. Biophys. J. 74, 2210–2222 (1998) [DOI] [PMC free article] [PubMed]
  • 40.Zimmermann, T., Rietdorf, J., Girod, A., Georget, V., Pepperkok, R.: Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett. 531(2), 245–249 (2002) [DOI] [PubMed]
  • 41.Chirico, G., Cannone, F., Diaspro, A., Bologna, S., Pellegrini, V., Nifosi, R., Beltram, F.: Multiphoton switching dynamics of single green fluorescent proteins. Phys. Rev. E. 70, 030901(R) (2004) [DOI] [PubMed]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES