Abstract
Traditionally, cardiac defibrillation requires a strong electric shock. Many unwanted side effects of this shock could be eliminated if defibrillation were performed using weak stimuli applied to several locations throughout the heart. Such multi-site pacing algorithms have been shown to defibrillate both experimentally (Pak et al., Am J Physiol 285:H2704–H2711, 2003) and theoretically (Puwal and Roth, J Biol Systems 14:101–112, 2006). Gauthier et al. (Chaos, 12:952–961, 2002) proposed a method to pace the heart using an algorithm based on nonlinear dynamics feedback applied through a single electrode. Our study applies a related but simpler algorithm, which essentially configures each electrode as a demand pacemaker, to simulate the multi-site pacing of fibrillating cardiac tissue. We use the numerical model developed by Fenton et al. (Chaos, 12:852–892, 2002) as the reaction term in a reaction–diffusion equation that we solve over a two-dimensional sheet of tissue. The defibrillation rate after pacing for 3 s is about 30%, which is significantly higher than the spontaneous defibrillation rate and is higher than observed in previous experimental and theoretical studies. Tuning the algorithm period can increase this rate to 45%.
Electronic supplementary material
The online version of this article (doi:10.1007/s10867-007-9049-9) contains supplementary material, which is available to authorized users.
Keywords: Defibrillation, Pacing, Feedback, Nonlinear dynamics, Numerical simulation, Heart
Footnotes
Electronic supplementary material
The online version of this article (doi:10.1007/s10867-007-9049-9) contains supplementary material, which is available to authorized users.
References
- 1.Garfinkel, A., Spano, M.L., Ditto, W.L., Weiss, J.N.: Controlling cardiac chaos. Science 257, 1230–1235 (1992) [DOI] [PubMed]
- 2.KenKnight, B.H., Bayly, P.V., Gerstle, R.J., Rollins, D.L., Wolf, P.D., Smith, W.M., Ideker, R.E.: Regional capture of fibrillating ventricular myocardium: Evidence for an excitable gap. Circ. Res. 77, 849–855 (1995) [DOI] [PubMed]
- 3.Kirchhof, C., Chorro, F., Scheffer, G.J., Brugada, J., Konings, K., Zetelaki, Z., Allessie, M.: Regional entrainment of atrial fibrillation studied by high-resolution mapping in open-chest dogs. Circulation 88, 736–749 (1993) [DOI] [PubMed]
- 4.Ditto, W.L., Spano, M.L., In, V., Neff, J., Meadows, B., Langberg, J.J., Bolmann, A., McTeague, K.: Control of human atrial fibrillation. Inter. J. Bifurcation Chaos 10, 593–601 (2000)
- 5.Stamp, A.T., Osipov, G.V., Collins, J.J.: Suppressing arrhythmias in cardiac models using overdrive pacing and calcium channel blockers. Chaos 12, 931–940 (2002) [DOI] [PubMed]
- 6.Pak, H.-N., Liu, Y.-B., Hayashi, H., Okuyama, Y., Chen, P.-S., Lin, S.-F.: Synchronization of ventricular fibrillation with real-time feedback pacing: implication to low-energy defibrillation. Am. J. Physiol. 285, H2704–H2711 (2003) [DOI] [PubMed]
- 7.Gauthier, D.J., Hall, G.M., Oliver, R.A., Dixon-Tulloch, E.G., Wolf, P.D., Bahar, S.: Progress toward controlling in vivo fibrillating sheep atria using a nonlinear-dynamics-based closed-loop feedback method. Chaos 12, 952–961 (2002) [DOI] [PubMed]
- 8.Hall, K., Christini, D.J., Tremblay, M., Collins, J.J., Glass, L., Billette, J.: Dynamic control of cardiac alternans. Phys. Rev. Lett. 78, 4518–4521 (1997) [DOI]
- 9.Christini, D.J., Stein, K.M., Markowitz, S.M., Mittal, S., Slotwiner, D.J., Scheiner, M.A., Iwai, S., Lerman, B.B.: Nonlinear-dynamical arrhythmia control in humans. Proc. Natl. Acad. Sci. U.S.A. 98, 5827–5832 (2001) [DOI] [PMC free article] [PubMed]
- 10.Hall, G.M., Gauthier, D.J.: Experimental control of cardiac muscle alternans. Phys. Rev. Lett. 88, 198102(2002) [DOI] [PubMed]
- 11.Echebarria, B., Karma, A.: Spatiotemporal control of cardiac alternans. Chaos 12, 923–930 (2002) [DOI] [PubMed]
- 12.Christini, D.J., Riccio, M.L., Culianu, C.A., Fox, J.J., Karma, A., Gilmour Jr., R.F.: Control of electrical alternans in canine cardiac Purkinje fibers. Phys. Rev. Lett. 96, 104101(2006) [DOI] [PMC free article] [PubMed]
- 13.Fenton, F.H., Karma, A.: Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos 8, 20–47 (1998) [DOI] [PubMed]
- 14.Fenton, F.H., Cherry, E.M., Hastings, H.M., Evans, S.J.: Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos 12, 852–892 (2002) [DOI] [PubMed]
- 15.Puwal, S., Roth, B.J.: Numerical simulations of synchronized pacing. J. Biol. Systems 14, 101–112 (2006) [DOI]
- 16.Newton, J.C., Huang, J., Rogers, J.M., Rollins, D.L., Walcott, G.P., Smith, W.S., Ideker, R.E.: Pacing during ventricular fibrillation: Factors influencing the ability to capture. J. Cardiovasc. Electrophysiol. 12, 76–84 (2001) [DOI] [PubMed]
